Truncated 7-cubes

From HandWiki
7-cube t0.svg
7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t01.svg
Truncated 7-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t12.svg
Bitruncated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t23.svg
Tritruncated 7-cube
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t6.svg
7-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-cube t56.svg
Truncated 7-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-cube t45.svg
Bitruncated 7-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t34.svg
Tritruncated 7-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in B7 Coxeter plane

In seven-dimensional geometry, a truncated 7-cube is a convex uniform 7-polytope, being a truncation of the regular 7-cube.

There are 6 truncations for the 7-cube. Vertices of the truncated 7-cube are located as pairs on the edge of the 7-cube. Vertices of the bitruncated 7-cube are located on the square faces of the 7-cube. Vertices of the tritruncated 7-cube are located inside the cubic cells of the 7-cube. The final three truncations are best expressed relative to the 7-orthoplex.

Truncated 7-cube

Truncated 7-cube
Type uniform 7-polytope
Schläfli symbol t{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 3136
Vertices 896
Vertex figure Elongated 5-simplex pyramid
Coxeter groups B7, [35,4]
Properties convex

Alternate names

  • Truncated hepteract (Jonathan Bowers)[1]

Coordinates

Cartesian coordinates for the vertices of a truncated 7-cube, centered at the origin, are all sign and coordinate permutations of

(1,1+√2,1+√2,1+√2,1+√2,1+√2,1+√2)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t01.svg 7-cube t01 B6.svg 7-cube t01 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t01 B4.svg 7-cube t01 B3.svg 7-cube t01 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t01 A5.svg 7-cube t01 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

The truncated 7-cube, is sixth in a sequence of truncated hypercubes:

Bitruncated 7-cube

Bitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol 2t{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 9408
Vertices 2688
Vertex figure { }v{3,3,3}
Coxeter groups B7, [35,4]
D7, [34,1,1]
Properties convex

Alternate names

  • Bitruncated hepteract (Jonathan Bowers)[2]

Coordinates

Cartesian coordinates for the vertices of a bitruncated 7-cube, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±2,±2,±2,±1,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t12.svg 7-cube t12 B6.svg 7-cube t12 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t12 B4.svg 7-cube t12 B3.svg 7-cube t12 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t12 A5.svg 7-cube t12 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

The bitruncated 7-cube is fifth in a sequence of bitruncated hypercubes:

Tritruncated 7-cube

Tritruncated 7-cube
Type uniform 7-polytope
Schläfli symbol 3t{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 13440
Vertices 3360
Vertex figure {4}v{3,3}
Coxeter groups B7, [35,4]
D7, [34,1,1]
Properties convex

Alternate names

  • Tritruncated hepteract (Jonathan Bowers)[3]

Coordinates

Cartesian coordinates for the vertices of a tritruncated 7-cube, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±2,±2,±1,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t23.svg 7-cube t23 B6.svg 7-cube t23 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t23 B4.svg 7-cube t23 B3.svg 7-cube t23 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t23 A5.svg 7-cube t23 A3.svg
Dihedral symmetry [6] [4]

Notes

  1. Klitizing (x3x3o3o3o3o4o - taz)
  2. Klitizing (o3x3x3o3o3o4o - botaz)
  3. Klitizing (o3o3x3x3o3o4o - totaz)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". https://bendwavy.org/klitzing/dimensions/polyexa.htm.  o3o3o3o3o3x4x - taz, o3o3o3o3x3x4o - botaz, o3o3o3x3x3o4o - totaz

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds