Truncated 7-orthoplexes

From HandWiki
7-cube t6.svg
7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t56.svg
Truncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t45.svg
Bitruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t34.svg
Tritruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t0.svg
7-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
7-cube t01.svg
Truncated 7-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
7-cube t12.svg
Bitruncated 7-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
7-cube t23.svg
Tritruncated 7-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Orthogonal projections in B7 Coxeter plane

In seven-dimensional geometry, a truncated 7-orthoplex is a convex uniform 7-polytope, being a truncation of the regular 7-orthoplex.

There are 6 truncations of the 7-orthoplex. Vertices of the truncation 7-orthoplex are located as pairs on the edge of the 7-orthoplex. Vertices of the bitruncated 7-orthoplex are located on the triangular faces of the 7-orthoplex. Vertices of the tritruncated 7-orthoplex are located inside the tetrahedral cells of the 7-orthoplex. The final three truncations are best expressed relative to the 7-cube.

Truncated 7-orthoplex

Truncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

6-faces
5-faces
4-faces
Cells 3920
Faces 2520
Edges 924
Vertices 168
Vertex figure ( )v{3,3,4}
Coxeter groups B7, [35,4]
D7, [34,1,1]
Properties convex

Alternate names

  • Truncated heptacross
  • Truncated hecatonicosoctaexon (Jonathan Bowers)[1]

Coordinates

Cartesian coordinates for the vertices of a truncated 7-orthoplex, centered at the origin, are all 168 vertices are sign (4) and coordinate (42) permutations of

(±2,±1,0,0,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t56.svg 7-cube t56 B6.svg 7-cube t56 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t56 B4.svg 7-cube t56 B3.svg 7-cube t56 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t56 A5.svg 7-cube t56 A3.svg
Dihedral symmetry [6] [4]

Construction

There are two Coxeter groups associated with the truncated 7-orthoplex, one with the C7 or [4,35] Coxeter group, and a lower symmetry with the D7 or [34,1,1] Coxeter group.

Bitruncated 7-orthoplex

Bitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol 2t{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

6-faces
5-faces
4-faces
Cells
Faces
Edges 4200
Vertices 840
Vertex figure { }v{3,3,4}
Coxeter groups B7, [35,4]
D7, [34,1,1]
Properties convex

Alternate names

  • Bitruncated heptacross
  • Bitruncated hecatonicosoctaexon (Jonathan Bowers)[2]

Coordinates

Cartesian coordinates for the vertices of a bitruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±1,0,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t45.svg 7-cube t45 B6.svg 7-cube t45 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t45 B4.svg 7-cube t45 B3.svg 7-cube t45 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t45 A5.svg 7-cube t45 A3.svg
Dihedral symmetry [6] [4]

Tritruncated 7-orthoplex

The tritruncated 7-orthoplex can tessellation space in the quadritruncated 7-cubic honeycomb.

Tritruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol 3t{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

6-faces
5-faces
4-faces
Cells
Faces
Edges 10080
Vertices 2240
Vertex figure {3}v{3,4}
Coxeter groups B7, [35,4]
D7, [34,1,1]
Properties convex

Alternate names

  • Tritruncated heptacross
  • Tritruncated hecatonicosoctaexon (Jonathan Bowers)[3]

Coordinates

Cartesian coordinates for the vertices of a tritruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±2,±1,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t34.svg 7-cube t34 B6.svg 7-cube t34 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t34 B4.svg 7-cube t34 B3.svg 7-cube t34 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t34 A5.svg 7-cube t34 A3.svg
Dihedral symmetry [6] [4]

Notes

  1. Klitzing, (x3x3o3o3o3o4o - tez)
  2. Klitzing, (o3x3x3o3o3o4o - botaz)
  3. Klitzing, (o3o3x3x3o3o4o - totaz)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". https://bendwavy.org/klitzing/dimensions/polyexa.htm.  x3x3o3o3o3o4o - tez, o3x3x3o3o3o4o - botaz, o3o3x3x3o3o4o - totaz

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds