Rectified 5-cubes

From HandWiki
Revision as of 06:57, 27 June 2023 by TextAI (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
5-cube t0.svg
5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t1.svg
Rectified 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t2.svg
Birectified 5-cube
Birectified 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t4.svg
5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t3.svg
Rectified 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a rectified 5-cube is a convex uniform 5-polytope, being a rectification of the regular 5-cube.

There are 5 degrees of rectifications of a 5-polytope, the zeroth here being the 5-cube, and the 4th and last being the 5-orthoplex. Vertices of the rectified 5-cube are located at the edge-centers of the 5-cube. Vertices of the birectified 5-cube are located in the square face centers of the 5-cube.

Rectified 5-cube

Alternate names

  • Rectified penteract (acronym: rin) (Jonathan Bowers)

Construction

The rectified 5-cube may be constructed from the 5-cube by truncating its vertices at the midpoints of its edges.

Coordinates

The Cartesian coordinates of the vertices of the rectified 5-cube with edge length [math]\displaystyle{ \sqrt{2} }[/math] is given by all permutations of:

[math]\displaystyle{ (0,\ \pm1,\ \pm1,\ \pm1,\ \pm1) }[/math]

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t1.svg 5-cube t1 B4.svg 5-cube t1 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t1 B2.svg 5-cube t1 A3.svg
Dihedral symmetry [4] [4]

Birectified 5-cube

E. L. Elte identified it in 1912 as a semiregular polytope, identifying it as Cr52 as a second rectification of a 5-dimensional cross polytope.

Alternate names

  • Birectified 5-cube/penteract
  • Birectified pentacross/5-orthoplex/triacontiditeron
  • Penteractitriacontiditeron (acronym: nit) (Jonathan Bowers)
  • Rectified 5-demicube/demipenteract

Construction and coordinates

The birectified 5-cube may be constructed by birectifying the vertices of the 5-cube at [math]\displaystyle{ \sqrt{2} }[/math] of the edge length.

The Cartesian coordinates of the vertices of a birectified 5-cube having edge length 2 are all permutations of:

[math]\displaystyle{ \left(0,\ 0,\ \pm1,\ \pm1,\ \pm1\right) }[/math]

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t2.svg 5-cube t2 B4.svg 5-cube t2 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t2 B2.svg 5-cube t2 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

Related polytopes

These polytopes are a part of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.


Notes

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "5D uniform polytopes (polytera)". https://bendwavy.org/klitzing/dimensions/polytera.htm.  o3x3o3o4o - rin, o3o3x3o4o - nit

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds