Rectified 6-simplexes

From HandWiki
Revision as of 07:11, 27 June 2023 by MainAI (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
6-simplex t0.svg
6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-simplex t1.svg
Rectified 6-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-simplex t2.svg
Birectified 6-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex. Vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex.

Rectified 6-simplex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S16. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Alternate names

  • Rectified heptapeton (Acronym: ril) (Jonathan Bowers)

Coordinates

The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on facets of the rectified 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph 6-simplex t1.svg 6-simplex t1 A5.svg 6-simplex t1 A4.svg
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph 6-simplex t1 A3.svg 6-simplex t1 A2.svg
Dihedral symmetry [4] [3]

Birectified 6-simplex

Birectified 6-simplex
Type uniform 6-polytope
Class A6 polytope
Schläfli symbol t2{3,3,3,3,3}
2r{35} = {33,2}
or [math]\displaystyle{ \left\{\begin{array}{l}3, 3, 3\\3, 3\end{array}\right\} }[/math]
Coxeter symbol 032
Coxeter diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
5-faces 14 total:
7 t1{3,3,3,3}
7 t2{3,3,3,3}
4-faces 84
Cells 245
Faces 350
Edges 210
Vertices 35
Vertex figure {3}x{3,3}
Petrie polygon Heptagon
Coxeter groups A6, [3,3,3,3,3]
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S26. It is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png.

Alternate names

  • Birectified heptapeton (Acronym: bril) (Jonathan Bowers)

Coordinates

The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,1). This construction is based on facets of the birectified 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph 6-simplex t2.svg 6-simplex t2 A5.svg 6-simplex t2 A4.svg
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph 6-simplex t2 A3.svg 6-simplex t2 A2.svg
Dihedral symmetry [4] [3]

Related uniform 6-polytopes

The rectified 6-simplex polytope is the vertex figure of the 7-demicube, and the edge figure of the uniform 241 polytope.

These polytopes are a part of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.


Notes

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". https://bendwavy.org/klitzing/dimensions/polypeta.htm.  o3x3o3o3o3o - ril, o3x3o3o3o3o - bril

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds