Biology:Gasotransmitter

From HandWiki
Revision as of 22:03, 10 February 2024 by Sherlock (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Class of neurotransmitters

Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters.[1] According to in vitro models, gasotransmitters, like other gaseous signaling molecules, may bind to gasoreceptors and trigger signaling in the cells.[1]

The name gasotransmitter is not intended to suggest a gaseous physical state such as infinitesimally small gas bubbles; the physical state is dissolution in complex body fluids and cytosol.[2] These particular gases share many common features in their production and function but carry on their tasks in unique ways which differ from classical signaling molecules.

Criteria

The terminology and characterization criteria of “gasotransmitter” were first introduced in 2002.[3] For one gas molecule to be categorized as a gasotransmitter, all of the following criteria should be met.[4][3]

  1. It is a small molecule of gas;
  2. It is freely permeable to membranes. As such, its effects do not rely on the cognate membrane receptors. It can have endocrine, paracrine, and autocrine effects. In their endocrine mode of action, for example, gasotransmitters can enter the blood stream; be carried to remote targets by scavengers and released there, and modulate functions of remote target cells;
  3. It is endogenously and enzymatically generated and its production is regulated;
  4. It has well defined and specific functions at physiologically relevant concentrations. Thus, manipulating the endogenous levels of this gas evokes specific physiological changes;
  5. Functions of this endogenous gas can be mimicked by its exogenously applied counterpart;
  6. Its cellular effects may or may not be mediated by second messengers, but should have specific cellular and molecular targets.

Overview

The current "trinity" of gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, have ironically been discarded as useless toxic gases throughout history. These molecules are a classic example of dose-dependent hormesis such that low-dose is beneficial whereas absence or excessive dosing is toxic. The beneficial effects of these endogenous molecules have inspired significant pharmaceutical drug development efforts for each gas.

The triad of gases have many similar features and participate in shared signaling pathways, although their actions can either be synergistic or as an antagonistic regulator.[5][6] Nitric oxide and hydrogen sulfide are highly reactive with numerous molecular targets, whereas carbon monoxide is relatively stable and metabolically inert predominately limited to interacting with ferrous ion complexes within mammalian organisms.[7] The scope of biological functions are different across phylogenetic kingdoms, however, exemplified by the important interactions of carbon monoxide with nickel or molybdenum carbon monoxide dehydrogenase enzymes.[8][9]

Gasotransmitters are under investigation in disciplines such as: biosensing,[10][11] immunology,[12][13] neuroscience,[14][15] gastroenterology,[16][17][18] and many other fields to include pharmaceutical development initiatives.[19][20][21] While biomedical research has received the most attention, gasotransmitters are under investigation throughout biological kingdoms.[22][23][24][25]

Many analytical tools have been developed to assist in the study of gasotransmitters.[26]

Nitric oxide

Main page: Biology:Biological functions of nitric oxide

The 1998 Nobel Prize in Physiology or Medicine was awarded for the discovery of nitric oxide (NO) as an endogenous signaling molecule. The research emerged in 1980 when NO was first known as the 'endothelium-derived relaxing factor' (EDRF). The identity of EDRF as actually being NO was revealed in 1986 which many consider to mark the beginning of the modern era of gasotransmitter research.[27]

Relative to carbon monoxide and hydrogen sulfide, NO is exceptional due to the fact it is a radical gas.[28] NO is highly reactive (having a lifetime of a few seconds), yet diffuses freely across membranes. These attributes make NO ideal for a transient paracrine (between adjacent cells) and autocrine (within a single cell) signaling molecule.

It is a known bioproduct in almost all types of organisms, ranging from bacteria to plants, fungi, and animal cells.[29][30] NO is biosynthesized endogenously from L-arginine by various nitric oxide synthase (NOS) enzymes. Reduction of inorganic nitrate may also serve to make NO. Independent of NOS, an alternative pathway coined the nitrate-nitrite-nitric oxide pathway, elevates NO through the sequential reduction of dietary nitrate derived from plant-based foods such as: leafy greens, such as spinach and arugula, and beetroot.[31][32][33] For the human body to generate NO through the nitrate-nitrite-nitric oxide pathway, the reduction of nitrate to nitrite occurs in the mouth by the oral microbiome.[34]

The production of NO is elevated in populations living at high altitudes, which helps these people avoid hypoxia by aiding in pulmonary vasculature vasodilation. The endothelium (inner lining) of blood vessels uses NO to signal the surrounding smooth muscle to relax, thus resulting in vasodilation and increasing blood flow.[35] NO contributes to vessel homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Humans with atherosclerosis, diabetes, or hypertension often show impaired NO pathways.[36] In the context of hypertension, the vasodilatory mechanism follows: NO acts through the stimulation of the soluble guanylate cyclase, which is a heterodimeric enzyme with subsequent formation of cyclic-GMP. Cyclic-GMP activates protein kinase G, which causes reuptake of Ca2+ and the opening of calcium-activated potassium channels. The fall in concentration of Ca2+ ensures that the myosin light-chain kinase (MLCK) can no longer phosphorylate the myosin molecule, thereby stopping the crossbridge cycle and leading to relaxation of the smooth muscle cell.[37]

NO is also generated by phagocytes (monocytes, macrophages, and neutrophils) as part of the human immune response.[38] Phagocytes are armed with inducible nitric oxide synthase (iNOS), which is activated by interferon-gamma (IFN-γ) as a single signal or by tumor necrosis factor (TNF) along with a second signal.[39][40][41] On the other hand, transforming growth factor-beta (TGF-β) provides a strong inhibitory signal to iNOS, whereas interleukin-4 (IL-4) and IL-10 provide weak inhibitory signals. In this way, the immune system may regulate the resources of phagocytes that play a role in inflammation and immune responses.[42] NO is secreted as free radicals in an immune response and is toxic to bacteria and intracellular parasites, including Leishmania[43] and malaria;[44][45][46] the mechanism for this includes DNA damage[47][48][49] and degradation of iron sulfur centers into iron ions and iron-nitrosyl compounds.[50]

Two important biological reaction mechanisms of NO are S-nitrosation of thiols, and nitrosylation of transition metal ions. S-nitrosation involves the (reversible) conversion of thiol groups, including cysteine residues in proteins, to form S-nitrosothiols (RSNOs). S-Nitrosation is a mechanism for dynamic, post-translational regulation of most or all major classes of protein.[51] The second mechanism, nitrosylation, involves the binding of NO to a transition metal ion like iron to modulate the normal enzymatic activity of an enzyme such as cytochrome P450. Nitrosylated ferrous iron is particularly stable, as the binding of the nitrosyl ligand to ferrous iron (Fe(II)) is very strong. Hemoglobin is a prominent example of a heme protein that may be modified by NO by multiple pathways.[52]

There are several mechanisms by which NO has been demonstrated to affect the biology of living cells. These include oxidation of iron-containing proteins such as ribonucleotide reductase and aconitase, activation of the soluble guanylate cyclase, ADP ribosylation of proteins, protein sulfhydryl group nitrosylation, and iron regulatory factor activation.[53] NO has been demonstrated to activate NF-κB in peripheral blood mononuclear cells, an important transcription factor in iNOS gene expression in response to inflammation.[54]

NO can be problematic under certain circumstances if it reacts with superoxide to produce the damaging oxidant peroxynitrite.

Pharmaceutical initiatives include: Nitroglycerin and amyl nitrite serve as vasodilators because they are converted to nitric oxide in the body. The vasodilating antihypertensive drug minoxidil contains an NO moiety and may act as an NO agonist. The mechanism of action for sildenafil (Viagra) is closely related to NO signaling. Inhaled NO may improve survival and recovery from paraquat poisoning.

Carbon monoxide

Carbon monoxide (CO) is produced naturally throughout phylogenetic kingdoms. In mammalian physiology, CO is an important neurotransmitter with beneficial roles such as reducing inflammation and blood vessel relaxation.[55][56][57] Mammals maintain a baseline carboxyhemoglobin level even if they do not breathe any CO fumes.

In mammals, CO is produced through many enzymatic and non-enzymatic pathways. The most extensively studied source is the catabolic action of heme oxygenase (HMOX) which has been estimated to account for 86% of endogenous CO production. Other contributing sources include: the microbiome, cytochrome P450 reductase, human acireductone dioxygenase, tyrosinase, lipid peroxidation, alpha-keto acids, and other oxidative mechanisms. Similarly, the velocity and catalytic activity of HMOX can be enhanced by a plethora of dietary substances and xenobiotics to increase CO production.[8]

The biomedical study of CO traces back to factitious airs in the 1790s when Thomas Beddoes, James Watt, James Lind, and many others investigated beneficial effects of hydrocarbonate (water gas) inhalation.[58] Following Solomon Snyder's first report that CO is a normal neurotransmitter in 1993,[59][60] CO has received significant clinical attention as a biological regulator. Unlike NO and H2S, CO is an inert molecule with remarkable chemical stability capable of diffusing through membranes to exert its effects locally and in distant tissues.[61] CO has been shown to interact with molecular targets including soluble guanylyl cyclase, mitochondrial oxidases, catalase, nitric oxide synthase, mitogen-activated protein kinase, PPAR gamma, HIF1A, NRF2, ion channels, cystathionine beta synthase, and numerous other functionalities.[62] It is widely accepted that CO primarily exerts its effects in mammals primarily through interacting with ferrous ion complexes such as the prosthetic heme moiety of hemoproteins.[7] Aside from Fe2+ interactions, CO may also interact with zinc within metalloproteinases, non-metallic histidine residues of certain ion channels, and various other metallic targets such nickel and molybdenum.[8]

Studies involving carbon monoxide have been conducted in many laboratories throughout the world for its anti-inflammatory and cytoprotective properties.[19] These properties have potential to be used to prevent the development of a series of pathological conditions including ischemia reperfusion injury, transplant rejection, atherosclerosis, severe sepsis, severe malaria, autoimmunity, and many other indications.[63][64]

Hydrogen sulfide

Main page: Biology:Biological functions of hydrogen sulfide

Hydrogen sulfide (H2S) has important signaling functions in mammalian physiology.[65] The gas is produced enzymatically by cystathionine beta-synthase and cystathionine gamma-lyase, endogenous non-enzymatic reactions,[66] and may also be produced by the microbiome.[67] Eventually the gas is converted to sulfite in the mitochondria by thiosulfate reductase, and the sulfite is further oxidized to thiosulfate and sulfate by sulfite oxidase. The sulfates are excreted in the urine.[68]

H2S acts as a relaxant of smooth muscle and as a vasodilator.[69] Though both NO and H2S have been shown to relax blood vessels, their mechanisms of action are different: while NO activates the enzyme guanylyl cyclase, H2S activates ATP-sensitive potassium channels in smooth muscle cells. Researchers are not clear how the vessel-relaxing responsibilities are shared between NO and H2S. However, there exists some evidence to suggest that NO does most of the vessel-relaxing work in large vessels and H2S is responsible for similar action in smaller blood vessels.[70] H2S deficiency can be detrimental to the vascular function after an acute myocardial infarction (AMI). H2S therapy reduces myocardial injury and reperfusion complications.[71][72] Due to its effects similar to NO (without its potential to form peroxides by interacting with superoxide), H2S is now recognized as potentially protecting against cardiovascular disease.[69][73]

Recent findings suggest strong cellular crosstalk of NO and H2S,[74] demonstrating that the vasodilatatory effects of these two gases are mutually dependent. Additionally, H2S reacts with intracellular S-nitrosothiols to form the smallest S-nitrosothiol (HSNO), and a role of H2S in controlling the intracellular S-nitrosothiol pool has been suggested.[75]

H2S is also active in the brain, where it increases the response of the NMDA receptor and facilitates long term potentiation,[76] which is involved in the formation of memory. In Alzheimer's disease and Parkinson's disease the brain's H2S concentration is severely decreased.[77][78]

The beneficial effects of H2S signaling inspired pharmaceutical development initiatives.[79] Akin to NO, presenting possible new therapy opportunities for erectile dysfunction.[80] In 2005, it was shown that mice can be put into a state of suspended animation-like hypothermia by applying a low dosage of H2S.[81][82]

Excess endogenous production of H2S can be problematic in disorders such as trisomy 21 (Down syndrome)[68] and type 1 diabetes.[70]

Gasotransmitter candidates

Some gaseous signaling molecules may be a gasotransmitter, notably methane and cyanide.[83][84] There is ongoing controversy about the strict criteria for gasotransmitters. Some researchers have proposed use of the term small molecule signaling agent, while others have proposed to relax the criteria to include other gases, such as oxygen as an essential gasotransmitter, similar to that of essential amino acids.[85]

External links

References

  1. 1.0 1.1 "Signaling by gasotransmitters". Science Signaling 2 (68): re2. April 2009. doi:10.1126/scisignal.268re2. PMID 19401594. 
  2. "Release of Bioactive Molecules Using Metal Complexes". Inorganic Chemical Biology. Chichester, UK: John Wiley & Sons, Ltd. 2014-04-18. pp. 309–339. doi:10.1002/9781118682975.ch10. ISBN 978-1-118-68297-5. 
  3. 3.0 3.1 "Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?". FASEB Journal 16 (13): 1792–1798. November 2002. doi:10.1096/fj.02-0211hyp. PMID 12409322. 
  4. Wang R (ed) (2004) Signal Transduction and the Gasotransmitters: NO, CO and H2S in Biology and Medicine. Humana Press, New Jersey, USA.
  5. "Shared signaling pathways among gasotransmitters". Proceedings of the National Academy of Sciences of the United States of America 109 (23): 8801–2. June 2012. doi:10.1073/pnas.1206646109. PMID 22615409. Bibcode2012PNAS..109.8801W. 
  6. "Gasotransmitters in health and disease: a mitochondria-centered view". Current Opinion in Pharmacology 45: 87–93. April 2019. doi:10.1016/j.coph.2019.07.001. PMID 31325730. 
  7. 7.0 7.1 "Biological signaling by carbon monoxide and carbon monoxide-releasing molecules". American Journal of Physiology. Cell Physiology 312 (3): C302–C313. March 2017. doi:10.1152/ajpcell.00360.2016. PMID 28077358. 
  8. 8.0 8.1 8.2 "Role of Carbon Monoxide in Host-Gut Microbiome Communication". Chemical Reviews 120 (24): 13273–13311. December 2020. doi:10.1021/acs.chemrev.0c00586. PMID 33089988. 
  9. "Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria?". Biochemical Society Transactions 46 (5): 1107–1118. October 2018. doi:10.1042/BST20170311. PMID 30190328. 
  10. "Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres". Chemical Society Reviews 48 (24): 5624–5657. December 2019. doi:10.1039/C9CS00268E. PMID 31748766. 
  11. "Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors". Chemical Reviews 115 (13): 6491–6533. July 2015. doi:10.1021/acs.chemrev.5b00018. PMID 26021768. 
  12. "Regulation of inflammation by the antioxidant haem oxygenase 1". Nature Reviews. Immunology 21 (7): 411–425. July 2021. doi:10.1038/s41577-020-00491-x. PMID 33514947. 
  13. "Gasotransmitters and the immune system: Mode of action and novel therapeutic targets". European Journal of Pharmacology 834: 92–102. September 2018. doi:10.1016/j.ejphar.2018.07.026. PMID 30016662. 
  14. "Carbon Monoxide: from Poison to Clinical Trials". Trends in Pharmacological Sciences 42 (5): 329–339. May 2021. doi:10.1016/j.tips.2021.02.003. PMID 33781582. 
  15. "Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology". ACS Chemical Neuroscience 11 (16): 2407–2415. August 2020. doi:10.1021/acschemneuro.0c00230. PMID 32564594. 
  16. "Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing". Molecules 20 (5): 9099–9123. May 2015. doi:10.3390/molecules20059099. PMID 25996214. 
  17. "The role of gasotransmitters in neonatal physiology". Nitric Oxide 95: 29–44. February 2020. doi:10.1016/j.niox.2019.12.002. PMID 31870965. 
  18. "Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics". Alimentary Pharmacology & Therapeutics 38 (7): 689–702. October 2013. doi:10.1111/apt.12467. PMID 23992228. 
  19. 19.0 19.1 "The therapeutic potential of carbon monoxide". Nature Reviews. Drug Discovery 9 (9): 728–743. September 2010. doi:10.1038/nrd3228. PMID 20811383. 
  20. "Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter". Nature Reviews. Drug Discovery 14 (5): 329–345. May 2015. doi:10.1038/nrd4433. PMID 25849904. 
  21. "Pharmacology of the 'gasotransmitters' NO, CO and H2S: translational opportunities". British Journal of Pharmacology 172 (6): 1395–1396. March 2015. doi:10.1111/bph.13005. PMID 25891246. 
  22. "NO, CO and H2 S: What about gasotransmitters in fish and amphibian heart?". Acta Physiologica 223 (1): e13035. May 2018. doi:10.1111/apha.13035. PMID 29338122. 
  23. "Gasotransmitters and Their Role in Adaptive Reactions of Plant Cells" (in en). Cytology and Genetics 53 (5): 392–406. 2019-09-01. doi:10.3103/S0095452719050098. ISSN 1934-9440. 
  24. "Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia". Frontiers in Physiology 11: 886. 2020-07-22. doi:10.3389/fphys.2020.00886. PMID 32792988. 
  25. "Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota". Microbial Ecology in Health and Disease 27: 30971. 2016-07-05. doi:10.3402/mehd.v27.30971. PMID 27389418. 
  26. Peng, H.; Chen, W.; Wang, B. (July 2012), Hermann, A.; Sitdikova, G. F.; Weiger, T. M., eds., "Methods for the Detection of Gasotransmitters" (in en), Gasotransmitters: Physiology and Pathophysiology (Berlin, Heidelberg: Springer): pp. 99–137, doi:10.1007/978-3-642-30338-8_4, ISBN 978-3-642-30338-8, https://doi.org/10.1007/978-3-642-30338-8_4, retrieved 2021-10-24 
  27. "CO as a therapeutic agent: discovery and delivery forms". Chinese Journal of Natural Medicines 18 (4): 284–295. April 2020. doi:10.1016/S1875-5364(20)30036-4. PMID 32402406. 
  28. "A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications". Reviews in Inorganic Chemistry 38 (4): 193–220. 2018-12-19. doi:10.1515/revic-2018-0011. ISSN 2191-0227. https://www.degruyter.com/document/doi/10.1515/revic-2018-0011/html. 
  29. The biology of subcellular nitric oxide. Dordrecht: Springer Science+Business Media B.V. 2012. ISBN 978-94-007-2818-9. 
  30. "A forty year journey: The generation and roles of NO in plants". Nitric Oxide 93: 53–70. December 2019. doi:10.1016/j.niox.2019.09.006. PMID 31541734. https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=56974. 
  31. "Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables". Berkeley Test. http://www.berkeleytest.com/plant-based.html. 
  32. "Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential". Hypertension 61 (5): 1091–1102. May 2013. doi:10.1161/HYPERTENSIONAHA.111.00933. PMID 23589565. 
  33. "Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite". Hypertension 51 (3): 784–790. March 2008. doi:10.1161/HYPERTENSIONAHA.107.103523. PMID 18250365. 
  34. "The oral microbiome and nitric oxide homoeostasis". Oral Diseases 21 (1): 7–16. January 2015. doi:10.1111/odi.12157. PMID 23837897. 
  35. "Nitric oxide and hydrogen sulfide: the gasotransmitter paradigm of the vascular system". British Journal of Pharmacology 174 (22): 4021–4031. November 2017. doi:10.1111/bph.13815. PMID 28407204. 
  36. "Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature". Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents 3 (3): 207–216. 2004. doi:10.2174/1568014043355348. 
  37. "Studies on the lipid content of pigeon breast muscle". Comparative Biochemistry and Physiology. A, Comparative Physiology 53 (1): 105–107. January 1976. doi:10.1016/s0300-9629(76)80020-5. PMID 174. 
  38. "Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes". Immunology Letters 25 (1–3): 15–19. August 1990. doi:10.1016/0165-2478(90)90083-3. PMID 2126524. https://zenodo.org/record/1258353. 
  39. Clinical immunology. Austin, TX: Landes Bioscience. 1999. ISBN 978-1-57059-625-4. 
  40. "Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice". Infection and Immunity 61 (2): 689–698. February 1993. doi:10.1128/IAI.61.2.689-698.1993. PMID 8423095. 
  41. "Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor". Journal of Inflammation 46 (1): 23–31. 1995. PMID 8832969. 
  42. "Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens". Immunology Letters 43 (1–2): 87–94. December 1994. doi:10.1016/0165-2478(94)00158-8. PMID 7537721. 
  43. "Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha". Journal of Immunology 145 (12): 4290–4297. December 1990. doi:10.4049/jimmunol.145.12.4290. PMID 2124240. 
  44. "Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells". The Journal of Experimental Medicine 180 (1): 353–358. July 1994. doi:10.1084/jem.180.1.353. PMID 7516412. 
  45. "IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism". Journal of Immunology 146 (11): 3971–3976. June 1991. doi:10.4049/jimmunol.146.11.3971. PMID 1903415. 
  46. "Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites". Journal of Immunology 154 (7): 3391–3395. April 1995. doi:10.4049/jimmunol.154.7.3391. PMID 7534796. 
  47. "DNA deaminating ability and genotoxicity of nitric oxide and its progenitors". Science 254 (5034): 1001–1003. November 1991. doi:10.1126/science.1948068. PMID 1948068. Bibcode1991Sci...254.1001W. 
  48. "DNA damage and mutation in human cells exposed to nitric oxide in vitro". Proceedings of the National Academy of Sciences of the United States of America 89 (7): 3030–3034. April 1992. doi:10.1073/pnas.89.7.3030. PMID 1557408. Bibcode1992PNAS...89.3030N.  Free text.
  49. "Threshold effects of nitric oxide-induced toxicity and cellular responses in wild-type and p53-null human lymphoblastoid cells". Chemical Research in Toxicology 19 (3): 399–406. March 2006. doi:10.1021/tx050283e. PMID 16544944.  free text
  50. "Nitric oxide: a cytotoxic activated macrophage effector molecule". Biochemical and Biophysical Research Communications 157 (1): 87–94. November 1988. doi:10.1016/S0006-291X(88)80015-9. PMID 3196352. 
  51. Radicals for life: the various forms of nitric oxide. Amsterdam: Elsevier. 2007. ISBN 978-0-444-52236-8. 
  52. Encyclopedia of analytical science (2nd ed.). [Amsterdam]: Elsevier. 2005. ISBN 978-0-12-764100-3. 
  53. "Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells". Leukemia Research 19 (8): 527–533. August 1995. doi:10.1016/0145-2126(95)00013-E. PMID 7658698. 
  54. "Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-kappaB activation in rat hepatocytes". Journal of Hepatology 30 (6): 1138–1145. June 1999. doi:10.1016/S0168-8278(99)80270-0. PMID 10406194. 
  55. "Carbon monoxide: endogenous production, physiological functions, and pharmacological applications". Pharmacological Reviews 57 (4): 585–630. December 2005. doi:10.1124/pr.57.4.3. PMID 16382109. 
  56. "Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO". Chemico-Biological Interactions 222 (5 October 2014): 37–43. October 2014. doi:10.1016/j.cbi.2014.08.005. PMID 25168849. 
  57. "Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases!". Pharmacology & Therapeutics 123 (3): 386–400. September 2009. doi:10.1016/j.pharmthera.2009.05.005. PMID 19486912. 
  58. Hopper, C. P.; Zambrana, P. N.; Goebel, U.; Wollborn, J. (June 2021). "A brief history of carbon monoxide and its therapeutic origins" (in en). Nitric Oxide 111-112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID 33838343. https://linkinghub.elsevier.com/retrieve/pii/S1089860321000367. 
  59. "Carbon monoxide: a putative neural messenger". Science 259 (5093): 381–384. January 1993. doi:10.1126/science.7678352. PMID 7678352. Bibcode1993Sci...259..381V. 
  60. "Carbon Monoxide Gas Is Used by Brain Cells As a Neurotransmitter". The New York Times. January 26, 1993. https://www.nytimes.com/1993/01/26/science/carbon-monoxide-gas-is-used-by-brain-cells-as-a-neurotransmitter.html?pagewanted=1. 
  61. ""CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications". Journal of Controlled Release 338: 593–609. September 2021. doi:10.1016/j.jconrel.2021.08.059. PMID 34481027. 
  62. "Carbon monoxide: An emerging therapy for acute kidney injury". Medicinal Research Reviews 40 (4): 1147–1177. July 2020. doi:10.1002/med.21650. PMID 31820474. 
  63. "Poison gas may carry a medical benefit". The Boston Globe. October 16, 2009. http://www.boston.com/news/local/massachusetts/articles/2009/10/16/poison_gas_may_carry_a_medical_benefit/?page=full. 
  64. Hopper, C. P.; Meinel, L.; Steiger, C.; Otterbein, L. E. (October 2018). "Where is the Clinical Breakthrough of Heme Oxygenase-1 / Carbon Monoxide Therapeutics?" (in en). Current Pharmaceutical Design 24 (20): 2264–2282. doi:10.2174/1381612824666180723161811. PMID 30039755. https://www.eurekaselect.com/164002/article. 
  65. "Gasotransmitter hydrogen sulfide signaling in neuronal health and disease". Biochemical Pharmacology 149: 101–109. March 2018. doi:10.1016/j.bcp.2017.11.019. PMID 29203369. 
  66. "Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma". Antioxidants 10 (5): 671. April 2021. doi:10.3390/antiox10050671. PMID 33925849. 
  67. "Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis". Molecules 21 (11): 1558. November 2016. doi:10.3390/molecules21111558. PMID 27869680. 
  68. 68.0 68.1 "[H2S, a new neuromodulator]". Médecine/Sciences 20 (6–7): 697–700. July 2004. doi:10.1051/medsci/2004206-7697. PMID 15329822. 
  69. 69.0 69.1 "A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide". Proceedings of the National Academy of Sciences of the United States of America 104 (46): 17907–17908. November 2007. doi:10.1073/pnas.0709010104. PMID 17991773. Bibcode2007PNAS..10417907L. 
  70. 70.0 70.1 "Toxic gas, lifesaver". Scientific American 302 (3): 66–71. March 2010. doi:10.1038/scientificamerican0310-66. PMID 20184185. Bibcode2010SciAm.302c..66W. 
  71. "Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent". Proceedings of the National Academy of Sciences of the United States of America 111 (8): 3182–3187. February 2014. doi:10.1073/pnas.1321871111. PMID 24516168. Bibcode2014PNAS..111.3182K. 
  72. "A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications". Biochemical Pharmacology 149: 110–123. March 2018. doi:10.1016/j.bcp.2017.11.014. PMID 29175421. 
  73. "Hydrogen sulfide mediates the vasoactivity of garlic". Proceedings of the National Academy of Sciences of the United States of America 104 (46): 17977–17982. November 2007. doi:10.1073/pnas.0705710104. PMID 17951430. Bibcode2007PNAS..10417977B. 
  74. "Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation". Proceedings of the National Academy of Sciences of the United States of America 109 (23): 9161–9166. June 2012. doi:10.1073/pnas.1202916109. PMID 22570497. Bibcode2012PNAS..109.9161C. 
  75. "Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols". Journal of the American Chemical Society 134 (29): 12016–12027. July 2012. doi:10.1021/ja3009693. PMID 22741609. 
  76. "Hydrogen sulfide as a neuromodulator". Molecular Neurobiology 26 (1): 13–19. August 2002. doi:10.1385/MN:26:1:013. PMID 12392053. 
  77. "Brain hydrogen sulfide is severely decreased in Alzheimer's disease". Biochemical and Biophysical Research Communications 293 (5): 1485–1488. May 2002. doi:10.1016/S0006-291X(02)00422-9. PMID 12054683. 
  78. "Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models". Aging Cell 9 (2): 135–146. April 2010. doi:10.1111/j.1474-9726.2009.00543.x. PMID 20041858. 
  79. Zheng, Y; Yu, B; De La Cruz, LK; RC, Manjusha; Anifowose, A; Wang, B (January 2018). "Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues". Medicinal Research Reviews 38 (1): 57–100. doi:10.1002/med.21433. ISSN 1098-1128. PMID 28240384. https://pubmed.ncbi.nlm.nih.gov/28240384/. 
  80. "Hydrogen Sulfide: Potential Help for ED". WebMD. 2 March 2009. http://www.webmd.com/erectile-dysfunction/news/20090302/hydrogen-sulfide-potential-help-for-ed. 
  81. Mice put in 'suspended animation', BBC News, 21 April 2005
  82. "Buying time in suspended animation". Scientific American 292 (6): 48–55. June 2005. doi:10.1038/scientificamerican0605-48. PMID 15934652. Bibcode2005SciAm.292f..48R. 
  83. "The role of methane in mammalian physiology-is it a gasotransmitter?". Journal of Breath Research 9 (1): 014001. January 2015. doi:10.1088/1752-7155/9/1/014001. PMID 25624411. Bibcode2015JBR.....9a4001B. http://publicatio.bibl.u-szeged.hu/11753/1/Boros_J_Breath_Res_2015_u.pdf. 
  84. "Cyanide emerges as an endogenous mammalian gasotransmitter". Proceedings of the National Academy of Sciences of the United States of America 118 (25): e2108040118. June 2021. doi:10.1073/pnas.2108040118. PMID 34099579. Bibcode2021PNAS..11808040P. 
  85. Wareham, Lauren K.; Southam, Hannah M.; Poole, Robert K. (19 October 2018). "Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria?". Biochemical Society Transactions 46 (5): 1107–1118. doi:10.1042/BST20170311.