Chemistry:T-HCA
Clinical data | |
---|---|
Other names | trans-4-hydroxycrotonic acid |
ATC code |
|
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
ChEMBL | |
Chemical and physical data | |
Formula | C4H6O3 |
Molar mass | 102.089 g·mol−1 |
3D model (JSmol) | |
| |
| |
(what is this?) (verify) |
trans-4-Hydroxycrotonic acid (T-HCA), also known as γ-hydroxycrotonic acid (GHC), is an agent used in scientific research to study the GHB receptor.[1] It is an analogue of γ-hydroxybutyric acid (GHB), as well as an active metabolite of GHB.[2][3][4] Similarly to GHB, T-HCA has been found to be endogenous to the rat central nervous system, and as a metabolite of GHB, is almost certain to be endogenous to humans as well.[3][5] T-HCA binds to the high-affinity GHB receptor with 4-fold greater affinity than GHB itself,[6] where it acts as an agonist,[1][7] but does not bind to the low-affinity GHB binding site, the GABAB receptor.[3][8] Because of this, T-HCA does not produce sedation. T-HCA has been shown to cause receptor activation-evoked increases in extracellular glutamate concentrations, notably in the hippocampus.[8]
See also
References
- ↑ 1.0 1.1 Gamma-Hydroxybutyrate: Pharmacological and Functional Aspects. CRC Press. 2 September 2003. pp. 24,104. ISBN 978-0-203-30099-2. https://books.google.com/books?id=lhfU11V_J0wC&pg=PA24.
- ↑ "Enzyme and receptor antagonists for preventing toxicity from the gamma-hydroxybutyric acid precursor 1,4-butanediol in CD-1 mice". Annals of the New York Academy of Sciences 965 (1): 461–472. June 2002. doi:10.1111/j.1749-6632.2002.tb04187.x. PMID 12105121. Bibcode: 2002NYASA.965..461Q.
- ↑ 3.0 3.1 3.2 "Analogues of gamma-hydroxybutyric acid. Synthesis and binding studies". Journal of Medicinal Chemistry 31 (5): 893–897. May 1988. doi:10.1021/jm00400a001. PMID 3361576.
- ↑ "Amino Acid Neurotransmitters in the Central Nervous System". Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. 24 January 2012. pp. 414–. ISBN 978-1-60913-345-0. https://books.google.com/books?id=Sd6ot9ul-bUC&pg=PA414.
- ↑ "Natural occurrence of trans-gamma hydroxycrotonic acid in rat brain". Biochemical Pharmacology 34 (13): 2401–2404. July 1985. doi:10.1016/0006-2952(85)90804-4. PMID 4015683.
- ↑ "Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain". The Journal of Pharmacology and Experimental Therapeutics 315 (1): 346–351. October 2005. doi:10.1124/jpet.105.090472. PMID 16014570.
- ↑ "Epilepsy and Seizure Susceptibility in the Aging Brain". Encyclopedia of Basic Epilepsy Research. Academic Press. 27 May 2009. pp. 44–. ISBN 978-0-12-373961-2. https://books.google.com/books?id=fPiWNqymTkYC&pg=PT44.
- ↑ 8.0 8.1 "Selective gamma-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of gamma-hydroxybutyric acid". Journal of Neurochemistry 87 (3): 722–732. November 2003. doi:10.1046/j.1471-4159.2003.02037.x. PMID 14535954.
Original source: https://en.wikipedia.org/wiki/T-HCA.
Read more |