Biology:Corynebacterium

From HandWiki
Revision as of 01:25, 13 February 2024 by JOpenQuest (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Genus of bacteria

Corynebacterium
"Corynebacterium ulcerans" colonies on a blood agar plate
Corynebacterium ulcerans colonies on a blood agar plate
Scientific classification e
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Mycobacteriales
Family: Corynebacteriaceae
Lehmann and Neumann 1907 (Approved Lists 1980)[2]
Genus: Corynebacterium
Lehmann and Neumann 1896 (Approved Lists 1980)[1]
Type species
Corynebacterium diphtheriae
(Kruse 1886) Lehmann and Neumann 1896 (Approved Lists 1980)
Species

See text.

Synonyms
  • Bacterionema Gilmour et al. 1961 (Approved Lists 1980)
  • Caseobacter Crombach 1978 (Approved Lists 1980)
  • Turicella Funke et al. 1994

Corynebacterium (/kɔːˈrnəbækˌtɪəriəm, -ˈrɪn-/) is a genus of Gram-positive bacteria and most are aerobic. They are bacilli (rod-shaped), and in some phases of life they are, more specifically, club-shaped, which inspired the genus name (coryneform means "club-shaped").

They are widely distributed in nature in the microbiota of animals (including the human microbiota) and are mostly innocuous, most commonly existing in commensal relationships with their hosts.[3] Some, such as C. glutamicum, are commercially and industrially useful.[4][5][6][7] Others can cause human disease, including, most notably, diphtheria, which is caused by C. diphtheriae. As with various species of microbiota (including their relatives in the genera Arcanobacterium and Trueperella), they usually are not pathogenic, but can occasionally opportunistically capitalize on atypical access to tissues (via wounds) or weakened host defenses.

Taxonomy

The genus Corynebacterium was created by Lehmann and Neumann in 1896 as a taxonomic group to contain the bacterial rods responsible for causing diphtheria. The genus was defined based on morphological characteristics. Based on studies of 16S rRNA, they have been grouped into the subdivision of Gram-positive Eubacteria with high G:C content, with close phylogenetic relationship to Arthrobacter, Mycobacterium, Nocardia, and Streptomyces.[8]

The term comes from Greek κορύνη, korýnē 'club, mace, staff, knobby plant bud or shoot'[9] and βακτήριον, baktḗrion 'little rod'.[10] The term "diphtheroids" is used to represent corynebacteria that are nonpathogenic; for example, C. diphtheriae would be excluded.[citation needed] The term diphtheroid comes from Greek διφθέρα, diphthérā 'prepared hide, leather'.[11][12]

Genomics

Comparative analysis of corynebacterial genomes has led to the identification of several conserved signature indels (CSIs) that are unique to the genus. Two examples of CSIs are a two-amino-acid insertion in a conserved region of the enzyme phosphoribose diphosphate:decaprenyl-phosphate phosphoribosyltransferase and a three-amino-acid insertion in acetate kinase, both of which are found only in Corynebacterium species. Both of these indels serve as molecular markers for species of the genus Corynebacterium. Additionally, 16 conserved signature proteins, which are uniquely found in Corynebacterium species, have been identified. Three of these have homologs found in the genus Dietzia, which is believed to be the closest related genus to Corynebacterium. In phylogenetic trees based on concatenated protein sequences or 16S rRNA, the genus Corynebacterium forms a distinct clade, within which is a distinct subclade, cluster I. The cluster is made up of the species C. diphtheriae, C. pseudotuberculosis, C. ulcerans, C. aurimucosum, C. glutamicum, and C. efficiens. This cluster is distinguished by several conserved signature indels, such as a two-amino-acid insertion in LepA and a seven- or eight-amino-acid insertions in RpoC. Also, 21 conserved signature proteins are found only in members of cluster I. Another cluster has been proposed, consisting of C. jeikeium and C. urealyticum, which is supported by the presence of 19 distinct conserved signature proteins which are unique to these two species.[13] Corynebateria have a high G+C content ranging from 46-74 mol%.[14]

Characteristics

The principal features of the genus Corynebacterium were described by Collins and Cummins, for Coryn Taylor in 1986.[15] They are gram-positive, catalase-positive, non-spore-forming, non-motile, rod-shaped bacteria that are straight or slightly curved.[16] Metachromatic granules are usually present representing stored phosphate regions. Their size falls between 2 and 6 μm in length and 0.5 μm in diameter. The bacteria group together in a characteristic way, which has been described as the form of a "V", "palisades", or "Chinese characters". They may also appear elliptical. They are aerobic or facultatively anaerobic, chemoorganotrophs. They are pleomorphic through their lifecycles, they occur in various lengths, and they frequently have thickenings at either end, depending on the surrounding conditions.[17]

Some corynebacteria are lipophilic (such as CDC coryneform groups F-1 and G, C. accolens, C. afermentans subsp. lipophilum, C. bovis,[18] C. jeikeium, C. macginleyi, C. uropygiale,[19] and C. urealyticum), but medically relevant corynebacteria are typically not.[20] The nonlipophilic bacteria may be classified as fermentative (such as C. amycolatum; C. argentoratense, members of the C. diphtheriae group, C. glucuronolyticum, C. glutamicum, C. matruchotii, C. minutissimum, C. striatum, and C. xerosis) or nonfermentative (such as C. afermentans subsp. afermentans, C. auris, C. pseudodiphtheriticum, and C. propinquum).[18]

Cell wall

The cell wall is distinctive, with a predominance of mesodiaminopimelic acid in the murein wall[3][16] and many repetitions of arabinogalactan, as well as corynemycolic acid (a mycolic acid with 22 to 26 carbon atoms), bound by disaccharide bonds called L-Rhap-(1 → 4)--D-GlcNAc-phosphate. These form a complex commonly seen in Corynebacterium species: the mycolyl-AG–peptidoglican (mAGP).[21] Unlike most corynebacteria, Corynebacterium kroppenstedtii does not contain mycolic acids.[22]

Culture

Corynebacteria grow slowly, even on enriched media. In nutritional requirements, all need biotin to grow. Some strains also need thiamine and PABA.[15] Some of the Corynebacterium species with sequenced genomes have between 2.5 and 3.0 million base pairs. The bacteria grow in Loeffler's medium, blood agar, and trypticase soy agar (TSA). They form small, grayish colonies with a granular appearance, mostly translucent, but with opaque centers, convex, with continuous borders.[16] The color tends to be yellowish-white in Loeffler's medium. In TSA, they can form grey colonies with black centers and dentated borders that either resemble flowers (C. gravis), continuous borders (C. mitis), or a mix between the two forms (C. intermedium).[citation needed]

Habitat

Corynebacterium species occur commonly in nature in soil, water, plants, and food products.[3][16] The non-diphtheroid Corynebacterium species can even be found in the mucosa and normal skin flora of humans and animals.[3][16] Unusual habitats, such as the preen gland of birds, have been recently reported for Corynebacterium uropygiale.[19] Some species are known for their pathogenic effects in humans and other animals. Perhaps the most notable one is C. diphtheriae, which acquires the capacity to produce diphtheria toxin only after interacting with a bacteriophage.[23][24] Other pathogenic species in humans include: C. amycolatum, C. striatum, C. jeikeium, C. urealyticum, and C. xerosis;[25][26][27][28][29] all of these are important as pathogens in immunosuppressed patients. Pathogenic species in other animals include C. bovis and C. renale.[30] This genus has been found to be part of the human salivary microbiome.[31]

Role in disease

Main page: Medicine:Diphtheria

The most notable human infection is diphtheria, caused by C. diphtheriae. It is an acute, contagious infection characterized by pseudomembranes of dead epithelial cells, white blood cells, red blood cells, and fibrin that form around the tonsils and back of the throat.[32] In developed countries, it is an uncommon illness that tends to occur in unvaccinated individuals, especially school-aged children, elderly, neutropenic or immunocompromised patients, and those with prosthetic devices such as prosthetic heart valves, shunts, or catheters. It is more common in developing countries[33] It can occasionally infect wounds, the vulva, the conjunctiva, and the middle ear. It can be spread within a hospital.[34] The virulent and toxigenic strains produce an exotoxin formed by two polypeptide chains, which is itself produced when a bacterium is transformed by a gene from the β prophage.[23][24]

Several species cause disease in animals, most notably C. pseudotuberculosis, which causes the disease caseous lymphadenitis, and some are also pathogenic in humans. Some attack healthy hosts, while others tend to attack the immunocompromised. Effects of infection include granulomatous lymphadenopathy, pneumonitis, pharyngitis, skin infections, and endocarditis. Corynebacterial endocarditis is seen most frequently in patients with intravascular devices.[35] Several species of Corynebacterium can cause trichomycosis axillaris.[36] C. striatum may cause axillary odor.[37] C. minutissimum causes erythrasma.

Industrial uses

Nonpathogenic species of Corynebacterium are used for important industrial applications, such as the production of amino acids[38] and nucleotides, bioconversion of steroids,[39] degradation of hydrocarbons,[40] cheese aging,[41] and production of enzymes.[42] Some species produce metabolites similar to antibiotics: bacteriocins of the corynecin-linocin type,[34][43][44] antitumor agents,[45] etc. One of the most studied species is C. glutamicum, whose name refers to its capacity to produce glutamic acid in aerobic conditions.[46]

L-Lysine production is specific to C. glutamicum in which core metabolic enzymes are manipulated through genetic engineering to drive metabolic flux towards the production of NADPH from the pentose phosphate pathway, and L-4-aspartyl phosphate, the commitment step to the synthesis of L-lysine, lysC, dapA, dapC, and dapF. These enzymes are up-regulated in industry through genetic engineering to ensure adequate amounts of lysine precursors are produced to increase metabolic flux. Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs, so scientists have developed mutant strains of C. glutamicum through PCR engineering and chemical knockouts to ensure production of side-reaction enzymes are limited. Many genetic manipulations conducted in industry are by traditional cross-over methods or inhibition of transcriptional activators.[47]

Expression of functionally active human epidermal growth factor has been brought about in C. glutamicum,[48] thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general secretory pathway or the twin-arginine translocation pathway.[49]

Unlike gram-negative bacteria, the gram-positive Corynebacterium species lack lipopolysaccharides that function as antigenic endotoxins in humans.[citation needed]

Species

Corynebacterium comprises the following species:[50]

  • C. accolens Neubauer et al. 1991
  • C. afermentans Riegel et al. 1993
  • C. alimapuense Claverias et al. 2019
  • "C. alkanolyticum" Lee and Reichenbach 2006
  • C. ammoniagenes (Cooke and Keith 1927) Collins 1987
  • C. amycolatum Collins et al. 1988
  • C. anserum Liu et al. 2021
  • C. appendicis Yassin et al. 2002
  • C. aquatimens Aravena-Román et al. 2012
  • C. aquilae Fernández-Garayzábal et al. 2003
  • C. argentoratense Riegel et al. 1995
  • "C. asperum" De Briel et al. 1992
  • C. atrinae Kim et al. 2015
  • C. atypicum Hall et al. 2003
  • C. aurimucosum Yassin et al. 2002
  • C. auris Funke et al. 1995
  • C. auriscanis Collins et al. 2000
  • C. belfantii Dazas et al. 2018
  • C. beticola Abdou 1969 (Approved Lists 1980)
  • "C. bouchesdurhonense" Ndongo et al. 2017
  • "C. bouchesdurhonense" Lo et al. 2019
  • C. bovis Bergey et al. 1923 (Approved Lists 1980)
  • C. callunae (Lee and Good 1963) Yamada and Komagata 1972 (Approved Lists 1980)
  • C. camporealensis Fernández-Garayzábal et al. 1998
  • C. canis Funke et al. 2010
  • C. capitovis Collins et al. 2001
  • C. casei Brennan et al. 2001
  • C. caspium Collins et al. 2004
  • C. choanae Busse et al. 2019
  • C. ciconiae Fernández-Garayzábal et al. 2004
  • C. comes Schaffert et al. 2021
  • C. confusum Funke et al. 1998
  • C. coyleae Funke et al. 1997
  • C. crudilactis Zimmermann et al. 2016
  • C. cystitidis Yanagawa and Honda 1978 (Approved Lists 1980)
  • "C. defluvii" Yu et al. 2017
  • "C. dentalis" Benabdelkader et al. 2020
  • C. deserti Zhou et al. 2012
  • C. diphtheriae (Kruse 1886) Lehmann and Neumann 1896 (Approved Lists 1980)
  • C. doosanense Lee et al. 2009
  • C. durum Riegel et al. 1997
  • C. efficiens Fudou et al. 2002
  • C. endometrii Ballas et al. 2020
  • C. epidermidicanis Frischmann et al. 2012
  • C. faecale Chen et al. 2016
  • C. falsenii Sjödén et al. 1998
  • C. felinum Collins et al. 2001
  • C. flavescens Barksdale et al. 1979 (Approved Lists 1980)
  • C. fournieri corrig. Diop et al. 2018
  • C. frankenforstense Wiertz et al. 2013
  • C. freiburgense Funke et al. 2009
  • C. freneyi Renaud et al. 2001
  • C. gerontici Busse et al. 2019
  • C. glaucum Yassin et al. 2003
  • C. glucuronolyticum Funke et al. 1995
  • C. glutamicum (Kinoshita et al. 1958) Abe et al. 1967 (Approved Lists 1980)
  • C. glyciniphilum (ex Kubota et al. 1972) Al-Dilaimi et al. 2015
  • C. gottingense Atasayar et al. 2017
  • C. guangdongense Li et al. 2016
  • "C. haemomassiliense" Boxberger et al. 2020
  • C. halotolerans Chen et al. 2004
  • C. hansenii Renaud et al. 2007
  • C. heidelbergense Braun et al. 2021
  • C. hindlerae Bernard et al. 2021
  • C. humireducens Wu et al. 2011
  • "C. ihumii" Padmanabhan et al. 2014
  • C. ilicis Mandel et al. 1961 (Approved Lists 1980)
  • C. imitans Funke et al. 1997
  • "C. incognitum" Boxberger et al. 2021
  • C. jeddahense Edouard et al. 2017
  • C. jeikeium Jackman et al. 1988
  • C. kalinowskii Schaffert et al. 2021
  • "C. kefirresidentii" Blasche et al. 2017
  • C. kroppenstedtii Collins et al. 1998
  • C. kutscheri (Migula 1900) Bergey et al. 1925 (Approved Lists 1980)
  • C. lactis Wiertz et al. 2013
  • "C. lactofermentum" Gubler et al. 1994
  • C. jeikliangguodongiiium Zhu et al. 2020
  • C. lipophiloflavum Funke et al. 1997
  • C. lizhenjunii Zhou et al. 2021
  • C. lowii Bernard et al. 2016
  • C. lubricantis Kämpfer et al. 2009
  • C. lujinxingii Zhang et al. 2021
  • C. macginleyi Riegel et al. 1995
  • C. marinum Du et al. 2010
  • C. maris Ben-Dov et al. 2009
  • C. massiliense Merhej et al. 2009
  • C. mastitidis Fernandez-Garayzabal et al. 1997
  • C. matruchotii (Mendel 1919) Collins 1983
  • C. minutissimum (ex Sarkany et al. 1962) Collins and Jones 1983
  • C. mucifaciens Funke et al. 1997
  • C. mustelae Funke et al. 2010
  • C. mycetoides (ex Castellani 1942) Collins 1983
  • C. nasicanis Baumgardt et al. 2015
  • "C. neomassiliense" Boxberger et al. 2020
  • C. nuruki Shin et al. 2011
  • C. occultum Schaffert et al. 2021
  • C. oculi Bernard et al. 2016
  • C. otitidis (Funke et al. 1994) Baek et al. 2018
  • "C. pacaense" Bellali et al. 2019
  • "C. parakroppenstedtii" Luo et al. 2022
  • "C. parvulum" Nakamura et al. 1983
  • C. pelargi Kämpfer et al. 2015
  • C. phocae Pascual et al. 1998
  • "C. phoceense" Cresci et al. 2016
  • C. pilbarense Aravena-Roman et al. 2010
  • C. pilosum Yanagawa and Honda 1978 (Approved Lists 1980)
  • C. pollutisoli Negi et al. 2016
  • C. propinquum Riegel et al. 1994
  • "C. provencense" Ndongo et al. 2017
  • "C. provencense" Lo et al. 2019
  • C. pseudodiphtheriticum Lehmann and Neumann 1896 (Approved Lists 1980)
  • "C. pseudokroppenstedtii" Luo et al. 2022
  • C. pseudopelargi Busse et al. 2019
  • C. pseudotuberculosis (Buchanan 1911) Eberson 1918 (Approved Lists 1980)
  • C. pyruviciproducens Tong et al. 2010
  • C. qintianiae Zhou et al. 2021
  • C. renale (Migula 1900) Ernst 1906 (Approved Lists 1980)
  • C. resistens Otsuka et al. 2005
  • C. riegelii Funke et al. 1998
  • C. rouxii Badell et al. 2020
  • C. sanguinis Jaén-Luchoro et al. 2020
  • "C. segmentosum" Collins et al. 1998
  • "C. senegalense" Ndiaye et al. 2019
  • C. silvaticum Dangel et al. 2020
  • C. simulans Wattiau et al. 2000
  • C. singulare Riegel et al. 1997
  • C. sphenisci Goyache et al. 2003
  • C. spheniscorum Goyache et al. 2003
  • C. sputi Yassin and Siering 2008
  • C. stationis (ZoBell and Upham 1944) Bernard et al. 2010
  • C. striatum (Chester 1901) Eberson 1918 (Approved Lists 1980)
  • C. suicordis Vela et al. 2003
  • C. sundsvallense Collins et al. 1999
  • C. suranareeae Nantapong et al. 2020
  • C. tapiri Baumgardt et al. 2015
  • C. terpenotabidum Takeuchi et al. 1999
  • C. testudinoris Collins et al. 2001
  • C. thomssenii Zimmermann et al. 1998
  • C. timonense Merhej et al. 2009
  • C. trachiae Kämpfer et al. 2015
  • C. tuberculostearicum Feurer et al. 2004
  • C. tuscaniense corrig. Riegel et al. 2006
  • "C. uberis" Kittl et al. 2022
  • C. ulcerans (ex Gilbert and Stewart 1927) Riegel et al. 1995
  • C. ulceribovis Yassin 2009
  • C. urealyticum Pitcher et al. 1992
  • C. ureicelerivorans Yassin 2007
  • "C. urinapleomorphum" Morand et al. 2017
  • C. urinipleomorphum corrig. Niang et al. 2021
  • C. urogenitale Ballas et al. 2020
  • C. uropygiale Braun et al. 2016
  • C. uterequi Hoyles et al. 2013
  • C. variabile corrig. (Müller 1961) Collins 1987
  • C. vitaeruminis corrig. (Bechdel et al. 1928) Lanéelle et al. 1980
  • C. wankanglinii Zhang et al. 2021
  • C. xerosis (Lehmann and Neumann 1896) Lehmann and Neumann 1899 (Approved Lists 1980)
  • C. yudongzhengii Zhu et al. 2020
  • C. zhongnanshanii Zhang et al. 2021


References

  1. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik (1st ed.). München: J.F. Lehmann. 1896. 
  2. Lehmann's Medizin, Handatlanten X. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik (4th ed.). Munchen: J. F. Lehmann. 1907. 
  3. 3.0 3.1 3.2 3.3 Collins, M. D. (2004). "Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica)". International Journal of Systematic and Evolutionary Microbiology 54 (3): 925–8. doi:10.1099/ijs.0.02950-0. PMID 15143043. 
  4. Poetsch, A. (2011). "Proteomics of corynebacteria: From biotechnology workhorses to pathogens". Proteomics 11 (15): 3244–3255. doi:10.1002/pmic.201000786. PMID 21674800. 
  5. Burkovski A., ed (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1. http://www.horizonpress.com/cory. [page needed]
  6. Kinoshita, Shukuo; Udaka, Shigezo; Shimono, Masakazu (1957). "Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms". The Journal of General and Applied Microbiology 3 (3): 193–205. doi:10.2323/jgam.3.193. PMID 15965888. 
  7. Kinoshita, Shukuo (1972-11-24). "Amino-acid Producnon by the Fermentation Process". Nature 240 (5378): 211. doi:10.1038/240211a0. PMID 4569416. 
  8. Woese, C. R. (1987). "Bacterial evolution". Microbiological Reviews 51 (2): 221–71. doi:10.1128/MMBR.51.2.221-271.1987. PMID 2439888. 
  9. κορύνη. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  10. βακτήριον, βακτηρία in Liddell and Scott.
  11. διφθέρα in Liddell and Scott.
  12. Harper, Douglas. "diphtheria". Online Etymology Dictionary. https://www.etymonline.com/?term=diphtheria. 
  13. Gao, B.; Gupta, R. S. (2012). "Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria". Microbiology and Molecular Biology Reviews 76 (1): 66–112. doi:10.1128/MMBR.05011-11. PMID 22390973. 
  14. Bernard, K.A.; Funke, G. (2012). "Genus I. Corynebacterium". in Goodfellow, M.; Kampfer, P.; Busse, H.J. et al.. Bergey's Manual of Systematic Bacteriology (2nd ed.). Springer. p. 245. 
  15. 15.0 15.1 Collins, M. D.; Cummins, C. S. (1986). "Genus Corynebacterium Lehmann and Neumann 1896, 350AL". in Sneath, P. H. A.; Mair, N. S.; Sharpe, M. E. et al.. Bergey's Manual of Systematic Bacteriology. 2. Baltimore: Williams & Wilkins. pp. 1266–76. 
  16. 16.0 16.1 16.2 16.3 16.4 Yassin, A. F. (2003). "Corynebacterium glaucum sp. nov". International Journal of Systematic and Evolutionary Microbiology 53 (3): 705–9. doi:10.1099/ijs.0.02394-0. PMID 12807190. 
  17. Keddie, R. M.; Cure, G. L. (1977). "The Cell Wall Composition and Distribution of Free Mycolic Acids in Named Strains of Coryneform Bacteria and in Isolates from Various Natural Sources". Journal of Applied Bacteriology 42 (2): 229–52. doi:10.1111/j.1365-2672.1977.tb00689.x. PMID 406255. 
  18. 18.0 18.1 Funke, G; von Graevenitz, A; Clarridge Je, 3rd; Bernard, K. A. (1997). "Clinical microbiology of coryneform bacteria". Clinical Microbiology Reviews 10 (1): 125–59. doi:10.1128/CMR.10.1.125. PMID 8993861. 
  19. 19.0 19.1 Braun, Markus Santhosh; Zimmermann, Stefan; Danner, Maria; Rashid, Harun-or; Wink, Michael (2016). "Corynebacterium uropygiale sp. nov., isolated from the preen gland of turkeys (Meleagris gallopavo)". Systematic and Applied Microbiology 39 (2): 88–92. doi:10.1016/j.syapm.2015.12.001. PMID 26776107. 
  20. Bernard, Kathryn (2012). "The Genus Corynebacterium and Other Medically Relevant Coryneform-Like Bacteria" (in en). Journal of Clinical Microbiology 50 (10): 3152–3158. doi:10.1128/JCM.00796-12. ISSN 0095-1137. PMID 22837327. PMC 3457441. https://journals.asm.org/doi/10.1128/JCM.00796-12. 
  21. Seidel, M.; Alderwick, L. J.; Sahm, H.; Besra, G. S.; Eggeling, L. (2006). "Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis". Glycobiology 17 (2): 210–9. doi:10.1093/glycob/cwl066. PMID 17088267. 
  22. Collins, M. D.; Falsen, E.; Akervall, E. et al. (1998). "Note: Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids". International Journal of Systematic Bacteriology 48 (4): 1449–54. doi:10.1099/00207713-48-4-1449. PMID 9828448. 
  23. 23.0 23.1 Costa, J. J.; Michel, J. L.; Rappuoli, R; Murphy, J. R. (1981). "Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon". Journal of Bacteriology 148 (1): 124–30. doi:10.1128/JB.148.1.124-130.1981. PMID 6270058. 
  24. 24.0 24.1 SIB: Viral exotoxin. Expasy: ViralZone. Accessed 2 Feb 2021
  25. Oteo, Jesús; Aracil, Belén; Ignacio Alós, Juan; Luis Gómez-Garcés, Jose (2001). "Bacteriemias significativas por Corynebacterium amycolatum: Un patógeno emergente" (in es). Enfermedades Infecciosas y Microbiología Clínica 19 (3): 103–6. doi:10.1016/S0213-005X(01)72578-5. PMID 11333587. 
  26. Lagrou, K; Verhaegen, J; Janssens, M; Wauters, G; Verbist, L (1998). "Prospective Study of Catalase-positive Coryneform Organisms in Clinical Specimens: Identification, Clinical Relevance, and Antibiotic Susceptibility". Diagnostic Microbiology and Infectious Disease 30 (1): 7–15. doi:10.1016/S0732-8893(97)00193-4. PMID 9488824. 
  27. Boc, SF; Martone, JD (1995). "Osteomyelitis caused by Corynebacterium jeikeium". Journal of the American Podiatric Medical Association 85 (6): 338–9. doi:10.7547/87507315-85-6-338. PMID 7602508. 
  28. Kono, M.; Sasatsu, M.; Aoki, T. (1983). "R Plasmids in Corynebacterium xerosis Strains". Antimicrobial Agents and Chemotherapy 23 (3): 506–8. doi:10.1128/aac.23.3.506. PMID 6847177. 
  29. Pitcher, D.G. (1983). "Deoxyribonucleic acid base composition of Corynebacterium diphtheriaeand other corynebacteria with cell wall type IV". FEMS Microbiology Letters 16 (2–3): 291–5. doi:10.1111/j.1574-6968.1983.tb00305.x. 
  30. Hirsbrunner, G; Lang, J; Nicolet, J; Steiner, A (1996). "Nephrektomie nach chronischer, unilateraler, eitriger Pyelonephritis beim Rind" (in de). Tierarztliche Praxis 24 (1): 17–21. PMID 8720950. 
  31. Wang, Kun; Lu, Wenxin; Tu, Qichao et al. (10 March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports 6 (1): 22943. doi:10.1038/srep22943. PMID 26961389. Bibcode2016NatSR...622943W. 
  32. "Difteria: MedlinePlus enciclopedia médica". https://www.nlm.nih.gov/medlineplus/spanish/ency/article/001608.htm. 
  33. Iizuka, Hideyo; Furuta, Joana Akiko; Oliveira, Edison P. Tavares de (1980). "Difteria: Situação imunitária de uma população infantil urbana de São Paulo, SP, Brasil" (in pt). Revista de Saúde Pública 14 (4): 462–8. doi:10.1590/S0034-89101980000400005. PMID 7268290. 
  34. 34.0 34.1 Kerry-Williams, S. M.; Noble, W. C. (2009). "Plasmids in group JK coryneform bacteria isolated in a single hospital". Journal of Hygiene 97 (2): 255–63. doi:10.1017/S0022172400065347. PMID 3023480. 
  35. León, Cristóbal; Ariza, Javier (2004). "Guías para el tratamiento de las infecciones relacionadas con catéteres intravasculares de corta permanencia en adultos: Conferencia de consenso SEIMC-SEMICYUC" (in es). Enfermedades Infecciosas y Microbiología Clínica 22 (2): 92–7. doi:10.1016/S0213-005X(04)73041-4. PMID 14756991. 
  36. Trichomycosis axillaris at eMedicine
  37. Natsch, A.; Gfeller, H.; Gygax, P.; Schmid, J. (2005). "Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1". International Journal of Cosmetic Science 27 (2): 115–22. doi:10.1111/j.1467-2494.2004.00255.x. PMID 18492161. 
  38. Yamada, K.; Kinoshita, S.; Tsunoda, T. et al., eds (1972). The Microbial Production of Amino Acids. New York: Wiley. 
  39. Constantinides, Alkis (1980). "Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells". Biotechnology and Bioengineering 22 (1): 119–36. doi:10.1002/bit.260220110. PMID 7350926. 
  40. Cooper, D. G.; Zajic, J. E.; Gracey, D. E. (1979). "Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene". Journal of Bacteriology 137 (2): 795–801. doi:10.1128/JB.137.2.795-801.1979. PMID 422512. 
  41. Lee, Chang-Won; Lucas, Serge; Desmazeaud, Michel J. (1985). "Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria". FEMS Microbiology Letters 26 (2): 201–5. doi:10.1111/j.1574-6968.1985.tb01591.x. 
  42. Khurana, Sumit; Sanli, Gulsah; Powers, David B. et al. (2000). "Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases". Proteins: Structure, Function, and Genetics 39 (1): 68–75. doi:10.1002/(SICI)1097-0134(20000401)39:1<68::AID-PROT7>3.0.CO;2-Y. PMID 10737928. 
  43. Kerry-Williams, S.M.; Noble, W.C. (1984). "Plasmid-associated bacteriocin production in a JK-type coryneform bacterium". FEMS Microbiology Letters 25 (2–3): 179–82. doi:10.1111/j.1574-6968.1984.tb01451.x. 
  44. Suzuki, Takeo; Honda, Haruo; Katsumata, Ryoichi (1972). "Production of Antibacterial Compounds Analogous to Chloramphenicol by a n-Paraffin-grown Bacterium". Agricultural and Biological Chemistry 36 (12): 2223–8. doi:10.1271/bbb1961.36.2223. 
  45. Milas, Luka; Scott, Martin T. (1978). "Antitumor Activity of Corynebacterium Parvum". in Ford, Marvella E.; Watson, Dennis K.. Cancer Disparities. Advances in Cancer Research. 26 (1st ed.). pp. 257–306. doi:10.1016/S0065-230X(08)60090-1. ISBN 978-0-12-809878-3. 
  46. Abe, Shigeo; Takayama, KEN-Ichiro; Kinoshita, Shukuo (1967). "Taxonomical Studies on Glutamic Acid-Producing Bacteria". The Journal of General and Applied Microbiology 13 (3): 279–301. doi:10.2323/jgam.13.279. 
  47. Kjeldsen, Kjeld Raunkjær (2009). Optimization of an industrial L-lysine producing Corynebacterium glutamicum strain (PhD Thesis). Technical University of Denmark. OCLC 826400572. [page needed]
  48. Date, M.; Itaya, H.; Matsui, H.; Kikuchi, Y. (2006). "Secretion of human epidermal growth factor by Corynebacterium glutamicum". Letters in Applied Microbiology 42 (1): 66–70. doi:10.1111/j.1472-765X.2005.01802.x. PMID 16411922. 
  49. Meissner, Daniel; Vollstedt, Angela; Van Dijl, Jan Maarten; Freudl, Roland (2007). "Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria". Applied Microbiology and Biotechnology 76 (3): 633–42. doi:10.1007/s00253-007-0934-8. PMID 17453196. 
  50. "Corynebacterium". List of Prokaryotic names with Standing in Nomenclature (LPSN). https://lpsn.dsmz.de/genus/corynebacterium. 

Further reading

Wikidata ☰ Q133976 entry