Astronomy:KELT-1
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Andromeda |
Right ascension | 00h 01m 26.9169s[1] |
Declination | 39° 23′ 01.7821″[1] |
Apparent magnitude (V) | 10.63 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | F[2] |
Astrometry | |
Radial velocity (Rv) | 1.296[3] km/s |
Proper motion (μ) | RA: -9.696[3] mas/yr Dec.: -7.823[3] mas/yr |
Parallax (π) | 3.6836 ± 0.0144[3] mas |
Distance | 885 ± 3 ly (271 ± 1 pc) |
Position (relative to KELT-1)[2] | |
Component | KELT-1B |
Epoch of observation | 2012 |
Angular distance | 0.588±0.001″ |
Position angle | 157.4±0.2° |
Observed separation (projected) | 154±8 AU |
Details[2] | |
Mass | 1.324±0.026 M☉ |
Radius | 1.462+0.037−0.024 R☉ |
Luminosity | 3.11±0.05[4] L☉ |
Surface gravity (log g) | 4.229+0.012−0.019 cgs |
Temperature | 6518±50 K |
Metallicity [Fe/H] | 0.008±0.073 dex |
Rotational velocity (v sin i) | 55 km/s |
Age | 1.75±0.25 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
KELT-1 is a F-type main-sequence star. Its surface temperature is 6518±50 K. It is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.008±0.073, but is much younger at an age of 1.75±0.25 billion years. The star is rotating very rapidly.[2]
A red dwarf stellar companion at a projected separation of 154±8 AU was detected in 2012, simultaneously with a planetary companion.[2]
Planetary system
The star was found to be orbited by a low-mass brown dwarf or giant planet in 2012.[2]
Brown dwarf/planet KELT-1b has an equilibrium temperature of 2422+32−26 K,[2] but features a very strong contrast between measured dayside and nightside temperatures. Dayside temperature appears to be 3340±110 K,[5] while nightside temperature is 1173+175−130 K.[6] The excess dayside temperature may be an artifact arising from highly reflective (dayside albedo reaching 0.5, which is unusual for hot planets and brown dwarfs) rock-vapor clouds. Also, the brightest band is shifted eastward from the subsolar point by 18.3±7.4°.[5]
KELT-1b's density of 22.1+5.62−9.16 g/cm3 is the highest among well characterized planets.[4]
The planetary orbit is well aligned with the equatorial plane of the star, with the misalignment angle equal to 2±16°.[2] Despite the short orbital period, orbital decay of KELT-1b has not been detected as of 2018.[7]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 27.23+0.50−0.48 MJ | 0.02466±0.00016 | 1.21749397 | 0 | 85.3+2.9−2.6° | 1.15+0.10−0.15 RJ |
See also
References
- ↑ 1.0 1.1 1.2 "KELT-1". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=KELT-1.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Siverd, Robert J.; Beatty, Thomas G.; Pepper, Joshua; Eastman, Jason D.; Collins, Karen; Bieryla, Allyson; Latham, David W.; Buchhave, Lars A. et al. (2012), "KELT-1b: A STRONGLY IRRADIATED, HIGHLY INFLATED, SHORT PERIOD, 27 JUPITER-MASS COMPANION TRANSITING A MID-F STAR", The Astrophysical Journal 761 (2): 123, doi:10.1088/0004-637X/761/2/123, Bibcode: 2012ApJ...761..123S
- ↑ 3.0 3.1 3.2 3.3 Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode: 2021A&A...649A...1G. Gaia EDR3 record for this source at VizieR.
- ↑ 4.0 4.1 4.2 Johns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (2018), "Revised Exoplanet Radii and Habitability Using Gaia Data Release 2", The Astrophysical Journal Supplement Series 239 (1): 14, doi:10.3847/1538-4365/aae5fb, Bibcode: 2018ApJS..239...14J
- ↑ 5.0 5.1 Beatty, Thomas G.; Wong, Ian; Fetherolf, Tara; Line, Michael R.; Shporer, Avi; Stassun, Keivan G.; Ricker, George R.; Seager, Sara et al. (2020), "The TESS phase curve of KELT-1b suggests a high dayside albedo", The Astronomical Journal 160 (5): 211, doi:10.3847/1538-3881/abb5aa, Bibcode: 2020AJ....160..211B
- ↑ Beatty, Thomas G.; Marley, Mark S.; Gaudi, B. Scott; Colón, Knicole D.; Fortney, Jonathan J.; Showman, Adam P. (2019), "Spitzer Phase Curves of KELT-1b and the Signatures of Nightside Clouds in Thermal Phase Observations", The Astronomical Journal 158 (4): 166, doi:10.3847/1538-3881/ab33fc, Bibcode: 2019AJ....158..166B
- ↑ 7.0 7.1 Maciejewski, G.; Fernández, M.; Aceituno, F.; Martín-Ruiz, S.; Ohlert, J.; Dimitrov, D.; Szyszka, K.; von Essen, C. et al. (2018), "Planet-star interactions with precise transit timing. I. The refined orbital decay rate for WASP-12 b and initial constraints for HAT-P-23 b, KELT-1 b, KELT-16 b, WASP-33 b, and WASP-103 b", Acta Astronomica 68 (4): 371, doi:10.32023/0001-5237/68.4.4, Bibcode: 2018AcA....68..371M
Coordinates: 00h 01m 26.9169s, +39° 23′ 01.7821″
Original source: https://en.wikipedia.org/wiki/KELT-1.
Read more |