Astronomy:Tolman–Oppenheimer–Volkoff limit

From HandWiki
Short description: Upper bound to the mass of cold, nonrotating neutron stars

The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, non-rotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of a neutron star reaches the limit it will collapse to a denser form, most likely a black hole. The original calculation in 1939, which neglected complications such as nuclear forces between neutrons, placed this limit at approximately 0.7 solar masses (M). Later, more refined analyses have resulted in larger values.

Theoretical work in 1996 placed the limit at approximately 1.5 to 3.0 M,[1] corresponding to an original stellar mass of 15 to 20 M; additional work in the same year gave a more precise range of 2.2 to 2.9 M.[2]

Data from GW170817, the first gravitational wave observation attributed to merging neutron stars (thought to have collapsed into a black hole[3] within a few seconds after merging[4]) placed the limit in the range of 2.01 to 2.17 M.[5]

In the case of a rigidly spinning neutron star, meaning that different levels in the interior of the star all rotate at the same rate, the mass limit is thought to increase by up to 18–20%.[4][5]

History

The idea that there should be an absolute upper limit for the mass of a cold (as distinct from thermal pressure supported) self-gravitating body dates back to the 1932 work of Lev Landau, based on the Pauli exclusion principle. Pauli's principle shows that the fermionic particles in sufficiently compressed matter would be forced into energy states so high that their rest mass contribution would become negligible when compared with the relativistic kinetic contribution (RKC). RKC is determined just by the relevant quantum wavelength λ, which would be of the order of the mean interparticle separation. In terms of Planck units, with the reduced Planck constant ħ, the speed of light c, and the gravitational constant G all set equal to one, there will be a corresponding pressure given roughly by

[math]\displaystyle{ P=\frac{1}{\lambda^4} }[/math].

At the upper mass limit, that pressure will equal the pressure needed to resist gravity. The pressure to resist gravity for a body of mass M will be given according to the virial theorem roughly by

[math]\displaystyle{ P^3=M^2\rho^4 }[/math],

where ρ is the density. This will be given by ρ = m/λ3, where m is the relevant mass per particle. It can be seen that the wavelength cancels out so that one obtains an approximate mass limit formula of the very simple form

[math]\displaystyle{ M=\frac{1}{m^2} }[/math].

In this relationship, m can be taken to be given roughly by the proton mass. This even applies in the white dwarf case (that of the Chandrasekhar limit) for which the fermionic particles providing the pressure are electrons. This is because the mass density is provided by the nuclei in which the neutrons are at most about as numerous as the protons. Likewise the protons, for charge neutrality, must be exactly as numerous as the electrons outside.

In the case of neutron stars this limit was first worked out by J. Robert Oppenheimer and George Volkoff in 1939, using the work of Richard Chace Tolman. Oppenheimer and Volkoff assumed that the neutrons in a neutron star formed a degenerate cold Fermi gas. They thereby obtained a limiting mass of approximately 0.7 solar masses,[6][7] which was less than the Chandrasekhar limit for white dwarfs. Oppenheimer and Volkoff's paper noted 'If... the effect of repulsive forces, i.e., of raising the pressure for a given density above the value given by the Fermi equation of state, this could tend to prevent the collapse'.[7] And indeed, the most massive neutron star detected so far, PSR J0952–0607, is estimated to be much heavier than Oppenheimer and Volkoff's TOV limit at 2.35±0.17 M.[8][9] More realistic models neutron stars including baryon strong force repulsion predict a neutron star mass limit of 2.2 to 2.9 M.[10][11] The uncertainty in the value reflects the fact that the equations of state for extremely dense matter are not well known.

Applications

In a neutron star less massive than the limit, the weight of the star is balanced by short-range repulsive neutron–neutron interactions mediated by the strong force and also by the quantum degeneracy pressure of neutrons, preventing collapse. If its mass is above the limit, the star will collapse to some denser form. It could form a black hole, or change composition and be supported in some other way (for example, by quark degeneracy pressure if it becomes a quark star). Because the properties of hypothetical, more exotic forms of degenerate matter are even more poorly known than those of neutron-degenerate matter, most astrophysicists assume, in the absence of evidence to the contrary, that a neutron star above the limit collapses directly into a black hole.

A black hole formed by the collapse of an individual star must have mass exceeding the Tolman–Oppenheimer–Volkoff limit. Theory predicts that because of mass loss during stellar evolution, a black hole formed from an isolated star of solar metallicity can have a mass of no more than approximately 10 solar masses.[12]:Fig. 16 Observationally, because of their large mass, relative faintness, and X-ray spectra, a number of massive objects in X-ray binaries are thought to be stellar black holes. These black hole candidates are estimated to have masses between 3 and 20 solar masses.[13][14] LIGO has detected black hole mergers involving black holes in the 7.5–50 solar mass range; it is possible – although unlikely – that these black holes were themselves the result of previous mergers.

Oppenheimer and Volkoff discounted the influence of heat, stating in reference to work by Landau (1932), 'even [at] 107 degrees… the pressure is determined essentially by the density only and not by the temperature'[7] - yet it has been estimated[15] that temperatures can reach up to approximately >109 K during formation of a neutron star, mergers and binary accretion. Another source of heat and therefore collapse-resisting pressure in neutron stars is 'viscous friction in the presence of differential rotation.'[15]

Oppenheimer and Volkoff's calculation of the mass limit of neutron stars also neglected to consider the rotation of neutron stars, however we now know that neutron stars are capable of spinning at much faster rates than were known in Oppenheimer and Volkoff's time. The fastest-spinning neutron star known is PSR J1748-2446ad, rotating at a rate of 716 times per second[16][17] or 43,000 revolutions per minute, giving a linear (tangential) speed at the surface on the order of 0.24c (i.e., nearly a quarter the speed of light). Star rotation interferes with convective heat loss during supernova collapse, so rotating stars are more likely to collapse directly to form a black hole [18]:1044

List of the most massive neutron stars

Below is a list of neutron stars. These include rotating neutron stars and thus are not directly related to the TOV Limit.

Name Mass
(M)
Distance
(ly)
Companion class Mass determination method Notes Refs.
PSR J1748-2021B 274 2.74±0.21 27,700 D Rate of advance of periastron. In globular cluster NGC 6440. [19]
4U 1700-37 244 2.44±0.27 6,910 ± 1,120 O6.5Iaf+ Monte Carlo simulations of thermal comptonization process. HMXB system. [20][21]
PSR J0952–0607 244 2.35±0.17


3,200-5,700 Fastest and heaviest known galactic neutron star [22]
PSR J1311–3430 242 2.15–2.7 6,500–12,700 Substellar object Spectroscopic and photometric observation. Black widow pulsar. [23][24]
PSR J1600−3053 230 2.3+0.7
−0.6
6,500 ± 1,000 D Fourier analysis of Shapiro delay's orthometric ratio. [25][26]
PSR J2215+5135 225 2.27+0.17
−0.15
10,000 G5V Innovative measurement of companion's radial velocity. Redback pulsar. [27]
XMMU J013236.7+303228 220 2.2+0.8
−0.6
2,730,000 B1.5IV Detailed spectroscopic modelling. In M33, HMXB system. [28]
PSR J0751+1807 210 2.10±0.2 6,500 ± 1,300 D Precision pulse timing measurements of relativistic orbital decay. [29]
PSR J0740+6620 208 2.08±0.07 4,600 D Range and shape parameter of Shapiro delay. Most massive neutron star with a well-constrained mass [30][31][32]
PSR J0348+0432 201 2.01±0.04 2,100 D Spectroscopic observation and orbital decay due to radiation of gravitational waves. [25][33]
PSR B1516+02B 194 1.94+0.17
−0.19
24,500 D Rate of advance of periastron. In globular cluster M5. [25][34]
Vela X-1 188 1.88±0.13 6,200 ± 650 B0.5Ib Rate of advance of periastron. Prototypical detached HMXB system. [35]
PSR B1957+20 240 1.81±0.17 6,500 Substellar object Rate of advance of periastron. Prototype star of black widow pulsars. [36][37][38]

List of least massive black holes

Below is a list of black holes.

Name Mass
(M)
Distance
(ly)
Companion class Mass determination method Notes Refs.
V723 Monocerotis 304 3.04±0.06 1,500 K0/K1III Spectroscopic radial velocity measurements of companion. Mass may be underestimated due not accurate measurement distance to the companion star.[clarify] [39]
2MASS J05215658+4359220 330 3.3+2.8
−0.7
10,000 K-type (?) giant Spectroscopic radial velocity measurements of noninteracting companion. In Milky Way outskirts. [25][40][41]
GW190425's remnant 340 3.4+0.3
−0.1
518,600,000 Template:TableTBA Gravitational wave data of neutron star merger from LIGO and Virgo interferometers. 97% chance of prompt collapse into a black hole immediately after merger. [25][42][43]
NGC 3201-1 436 4.36±0.41 15,600 (see Notes) Spectroscopic radial velocity measurements of noninteracting companion. In globular cluster NGC 3201. Companion is 0.8M main sequence turn-off. [25][44]
HR 6819 (QV Tel) 460 5.0±0.4 1,120 Be/B3III Spectroscopic radial velocity measurements of companion. Unconfirmed black hole. [45]
GRO J1719-24/
GRS 1716−249
490 ≥4.9 8,500 K0-5 V Near-infrared photometry of companion and Eddington flux. LMXB system. [25][46]
4U 1543-47 500 5.0+2.5
−2.3
30,000 ± 3,500 A2 (V?) Spectroscopic radial velocity measurements of companion. SXT system. [25][47]
XTE J1650-500 511 ≥5.1 8,500 ± 2,300 K4V Orbital resonance modeling from QPOs Transient binary X-ray source [48]
GRO J1655-40 531 5.31±0.07 <5,500 F6IV Precision X-ray timing observations from RossiXTE. LMXB system. [49][50]
GX 339-4 590 5.9±3.6 26,000 Template:TableTBA [25]

List of objects in mass gap

This list contains objects that may be neutron stars, black holes, quark stars, or other exotic objects. This list is distinct from the list of least massive black holes due to the undetermined nature of these objects, largely because of indeterminate mass, or other poor observation data.

Name Mass
(M)
Distance
(ly)
Companion class Mass determination method Notes Refs.
GW170817's remnant 274 2.74+0.04
−0.01
144,000,000 Template:TableTBA Gravitational wave data of neutron star merger from LIGO and Virgo interferometers. In NGC 4993. Possibly collapsed into a black hole 5–10 seconds after merger. [51]
LB-1 720 2.0–70.0 approx. 7,000 Be star/stripped helium star Initially thought to be first black hole in pair-instability mass gap. [52][53]
Cygnus X-3 250 2.0–5.0 24,100 ± 3,600 WN4-6 Near-infrared spectroscopy and atmosphere model fitting of companion. Microquasar system. Major differences between the spectrum of Cyg X-3 and typical accreting BH can be explained by properties of its companion star. [54][55]
LS I +61 303 140 1.0 - 4.0 7,000 B0Ve Spectroscopic radial velocity measurements of companion. Microquasar system. It has a spectrum typical for black holes, however it emits HE and VHE gamma rays similar to neutron stars LS 2883 and HESS J0632+057, as well as mysterious object LS 5039. [56][57]
LS 5039 370 3.7+1.3
−1.0
8,200 ± 300 O(f)N6.5V Intermediate-dispersion spectroscopy and atmosphere model fitting of companion. Microquasar system. Only lowest possible mass allows it not to be a black hole. [58]
GRO J0422+32/V518 Persei 390 3.97+0.95
−1.87
8,500 M4.5V Photometric light curve modelling. SXT system. Only mass close to lowest possible allows it not to be a black hole. [25][59]

See also

Notes

References

  1. Bombaci, I. (1996). "The Maximum Mass of a Neutron Star". Astronomy and Astrophysics 305: 871–877. Bibcode1996A&A...305..871B. 
  2. Kalogera, V; Baym, G (11 August 1996). "The Maximum Mass of a Neutron Star". The Astrophysical Journal 470: L61–L64. doi:10.1086/310296. Bibcode1996ApJ...470L..61K. 
  3. Pooley, D.; Kumar, P.; Wheeler, J. C.; Grossan, B. (2018-05-31). "GW170817 Most Likely Made a Black Hole". The Astrophysical Journal 859 (2): L23. doi:10.3847/2041-8213/aac3d6. Bibcode2018ApJ...859L..23P. 
  4. 4.0 4.1 Cho, A. (16 February 2018). "A weight limit emerges for neutron stars". Science 359 (6377): 724–725. doi:10.1126/science.359.6377.724. PMID 29449468. Bibcode2018Sci...359..724C. 
  5. 5.0 5.1 Rezzolla, L.; Most, E. R.; Weih, L. R. (2018-01-09). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal 852 (2): L25. doi:10.3847/2041-8213/aaa401. Bibcode2018ApJ...852L..25R. 
  6. Tolman, R. C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review 55 (4): 364–373. doi:10.1103/PhysRev.55.364. Bibcode1939PhRv...55..364T. https://resolver.caltech.edu/CaltechAUTHORS:TOLpr39. 
  7. 7.0 7.1 7.2 Oppenheimer, J. R.; Volkoff, G. M. (1939). "On Massive Neutron Cores". Physical Review 55 (4): 374–381. doi:10.1103/PhysRev.55.374. Bibcode1939PhRv...55..374O. 
  8. Romani, Roger W.; Kandel, D.; Filippenko, Alexei V.; Brink, Thomas G.; Zheng, WeiKang (2022-08-01). "PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star". The Astrophysical Journal Letters 934 (2): L17. doi:10.3847/2041-8213/ac8007. ISSN 2041-8205. Bibcode2022ApJ...934L..17R. 
  9. "The heaviest neutron star on record is 2.35 times the mass of the sun" (in en-US). 2022-07-22. https://www.sciencenews.org/article/heaviest-neutron-star-mass-sun-record-black-holes. 
  10. Siegel, Ethan. "The Surprising Reason Why Neutron Stars Don't All Collapse To Form Black Holes" (in en). https://www.forbes.com/sites/startswithabang/2018/06/13/the-surprising-reason-why-neutron-stars-dont-all-collapse-to-form-black-holes/. 
  11. Burkert, V. D.; Elouadrhiri, L.; Girod, F. X. (2019-05-05). "The pressure distribution inside the proton" (in en). Nature 557 (7705): 396–399. doi:10.1038/s41586-018-0060-z. ISSN 1476-4687. PMID 29769668. https://www.nature.com/articles/s41586-018-0060-z. 
  12. Woosley, S. E.; Heger, A.; Weaver, T. A. (2002). "The Evolution and Explosion of Massive Stars". Reviews of Modern Physics 74 (4): 1015–1071. doi:10.1103/RevModPhys.74.1015. Bibcode2002RvMP...74.1015W. 
  13. McClintock, J. E.; Remillard, R. A. (2003). "Black Hole Binaries". arXiv:astro-ph/0306213.
  14. Casares, J. (2006). "Observational Evidence for Stellar-Mass Black Holes". Proceedings of the International Astronomical Union 2: 3. doi:10.1017/S1743921307004590. 
  15. 15.0 15.1 Kaminker, A. D.; Kaurov, A. A.; Potekhin, A. Y.; Yakovlev, D. G. (2014-08-21). "Thermal emission of neutron stars with internal heaters" (in en). Monthly Notices of the Royal Astronomical Society 442 (4): 3484–3494. doi:10.1093/mnras/stu1102. ISSN 1365-2966. http://academic.oup.com/mnras/article/442/4/3484/1357581/Thermal-emission-of-neutron-stars-with-internal. 
  16. Hessels, Jason W. T.; Ransom, Scott M.; Stairs, Ingrid H.; Freire, Paulo C. C.; Kaspi, Victoria M.; Camilo, Fernando (2006-03-31). "A Radio Pulsar Spinning at 716 Hz". Science 311 (5769): 1901–1904. doi:10.1126/science.1123430. ISSN 0036-8075. Bibcode2006Sci...311.1901H. 
  17. "SkyandTelescope.com - News from Sky & Telescope - Spinning Pulsar Smashes Record". 2007-12-29. http://www.skyandtelescope.com/news/3311021.html?page=1&c=y. 
  18. Fryer, Chris L.; Heger, Alexander (Oct 2000). "Core-Collapse Simulations of Rotating Stars" (in en). The Astrophysical Journal 541 (2): 1033–1050. doi:10.1086/309446. ISSN 0004-637X. Bibcode2000ApJ...541.1033F. https://iopscience.iop.org/article/10.1086/309446. 
  19. Lattimer, James M. (2015-02-25). "Introduction to Neutron Stars". AIP Conference Proceedings 1645 (1): 61–78. doi:10.1063/1.4909560. Bibcode2015AIPC.1645...61L. 
  20. Clark, J. S.; Goodwin, S. P.; Crowther, P. A.; Kaper, L.; Fairbairn, M.; Langer, N.; Brocksopp, C. (2002). "Physical parameters of the high-mass X-ray binary 4U1700-37". Astronomy & Astrophysics 392 (3): 909–920. doi:10.1051/0004-6361:20021184. Bibcode2002A&A...392..909C. 
  21. Martinez-Chicharro, M.; Torrej ́on, J. M.; Oskinova, L.; F ̈urst, F.; Postnov, K.; Rodes-Roca, J. J.; Hainich, R.; Bodaghee, A. (2018). "Evidence of Compton cooling during an X-ray flare supports a neutron star nature of the compact object in 4U1700−37". Monthly Notices of the Royal Astronomical Society: Letters 473 (1): L74–L78. doi:10.1093/mnrasl/slx165. Bibcode2018MNRAS.473L..74M. 
  22. Romani, Roger W.; Kandel, D.; Filippenko, Alexei V.; Brink, Thomas G.; Zheng, WeiKang (2022-08-01). "PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star". The Astrophysical Journal Letters 934 (2): L17. doi:10.3847/2041-8213/ac8007. ISSN 2041-8205. Bibcode2022ApJ...934L..17R. 
  23. Romani, Roger W.; Filippenko, Alexei V.; Silverman, Jeffery M.; Cenko, S. Bradley; Greiner, Jochen; Rau, Arne; Elliott, Jonathan; Pletsch, Holger J. (2012-10-25). "PSR J1311-3430: A Heavyweight Neutron Star with a Flyweight Helium Companion". The Astrophysical Journal Letters 760 (2): L36. doi:10.1088/2041-8205/760/2/L36. Bibcode2012ApJ...760L..36R. 
  24. Romani, Roger W. (2012-10-01). "2FGL J1311.7−3429 Joins the Black Widow club". The Astrophysical Journal Letters 754 (2): L25. doi:10.1088/2041-8205/754/2/L25. Bibcode2012ApJ...754L..25R. 
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 Elavsky, F; Geller, A. "Masses in the Stellar Graveyard". Northwestern University. https://ligo.northwestern.edu/media/mass-plot/index.html. 
  26. Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J. et al. (2018). "The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars". The Astrophysical Journal Supplement Series 235 (2): 37. doi:10.3847/1538-4365/aab5b0. Bibcode2018ApJS..235...37A. 
  27. Linares, M.; Shahbaz, T.; Casares, J.; Grossan, Bruce (2018). "Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215+5135". The Astrophysical Journal 859 (1): 54. doi:10.3847/1538-4357/aabde6. Bibcode2018ApJ...859...54L. 
  28. Bhalerao, Varun B.; Van Kerkwijk, Marten H.; Harrison, Fiona A. (2012). "Constraints on the Compact Object Mass in the Eclipsing High-mass X-Ray Binary XMMU J013236.7+303228 in M 33". The Astrophysical Journal 757 (1): 10. doi:10.1088/0004-637X/757/1/10. Bibcode2012ApJ...757...10B. 
  29. Nice, David J.; Splaver, Eric M.; Stairs, Ingrid H.; Loehmer, Oliver; Jessner, Axel; Kramer, Michael; Cordes, James M. (2005). "A 2.1 Solar Mass Pulsar Measured by Relativistic Orbital Decay". The Astrophysical Journal 634 (2): 1242–1249. doi:10.1086/497109. Bibcode2005ApJ...634.1242N. 
  30. Fonseca, E.; Cromartie, H. T.; Pennucci, T. T.; Ray, P. S.; Kirichenko, A. Yu; Ransom, S. M.; Demorest, P. B.; Stairs, I. H. et al. (1 July 2021). "Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620" (in en). The Astrophysical Journal Letters 915 (1): L12. doi:10.3847/2041-8213/ac03b8. ISSN 2041-8205. Bibcode2021ApJ...915L..12F. 
  31. Kohler, Susanna (16 August 2021). "Reweighing a Heavy Neutron Star" (in en-US). https://aasnova.org/2021/08/16/re-weighing-a-heavy-neutron-star/. 
  32. Cromartie, H. T.; Fonseca, E.; Ransom, S. M. et al. (2019). "Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar". Nature Astronomy 4: 72–76. doi:10.1038/s41550-019-0880-2. Bibcode2020NatAs...4...72C. 
  33. Demorest, P. B.; Pennucci, T.; Ransom, S. M.; Roberts, M. S. E.; Hessels, J. W. T. (2010). "A two-solar-mass neutron star measured using Shapiro delay". Nature 467 (7319): 1081–1083. doi:10.1038/nature09466. PMID 20981094. Bibcode2010Natur.467.1081D. 
  34. Freire, Paulo C. C. (2008). "Super-Massive Neutron Stars". AIP Conference Proceedings 983: 459–463. doi:10.1063/1.2900274. Bibcode2008AIPC..983..459F. 
  35. Quaintrell, H. (2003). "The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel". Astronomy and Astrophysics 401: 313–324. doi:10.1051/0004-6361:20030120. Bibcode2003A&A...401..313Q. 
  36. Van Kerkwijk, M. H.; Breton, R. P.; Kulkarni, S. R. (2011). "Evidence for a Massive Neutron Star from a Radial-Velocity Study of the Companion to the Black-Widow Pulsar Psr B1957+20". The Astrophysical Journal 728 (2): 95. doi:10.1088/0004-637X/728/2/95. Bibcode2011ApJ...728...95V. 
  37. Clark, C. J.; Kerr, M.; Barr, E. D.; Bhattacharyya, B.; Breton, R. P.; Bruel, P.; Camilo, F.; Chen, W. et al. (2023-01-26). "Neutron star mass estimates from gamma-ray eclipses in spider millisecond pulsar binaries" (in en). Nature Astronomy 7 (4): 451–462. doi:10.1038/s41550-022-01874-x. ISSN 2397-3366. PMID 37096051. Bibcode2023NatAs...7..451C. 
  38. "Gamma-ray eclipses shed new light on spider pulsars" (in en). https://www.aei.mpg.de/830748/gamma-ray-eclipses-shed-new-light-on-spider-pulsars. 
  39. Jayasinghe, T.; Stanek, K. Z.; Thompson, Todd A.; Kochanek, C. S.; Rowan, D. M.; Vallely, P. J.; Strassmeier, K. G.; Weber, M. et al. (2021). "A unicorn in monoceros: The 3 M⊙ dark companion to the bright, nearby red giant V723 Mon is a non-interacting, mass-gap black hole candidate". Monthly Notices of the Royal Astronomical Society 504 (2): 2577–2602. doi:10.1093/mnras/stab907. Bibcode2021MNRAS.504.2577J. 
  40. Thompson, T. A.; Kochanek, C. S.; Stanek, K. Z. et al. (2019). "A noninteracting low-mass black hole–giant star binary system". Science 366 (6465): 637–640. doi:10.1126/science.aau4005. PMID 31672898. Bibcode2019Sci...366..637T. 
  41. Kumar, V. (2019-11-03). "Astronomers Spot A New Class Of Low-Mass Black Holes". https://www.rankred.com/new-class-of-low-mass-black-holes/. 
  42. Abbott, B. P. et al. (2020). "GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M ⊙". The Astrophysical Journal 892 (1): L3. doi:10.3847/2041-8213/ab75f5. Bibcode2020ApJ...892L...3A. 
  43. Foley, Ryan J.; Coulter, David A.; Kilpatrick, Charles D.; Piro, Anthony L.; Ramirez-Ruiz, Enrico; Schwab, Josiah (2020). "Updated parameter estimates for GW190425 using astrophysical arguments and implications for the electromagnetic counterpart". Monthly Notices of the Royal Astronomical Society 494 (1): 190–198. doi:10.1093/mnras/staa725. Bibcode2020MNRAS.494..190F. 
  44. Giesers, B et al. (2018). "A detached stellar-mass black hole candidate in the globular cluster NGC 3201". Monthly Notices of the Royal Astronomical Society: Letters 475 (1): L15–L19. doi:10.1093/mnrasl/slx203. Bibcode2018MNRAS.475L..15G. 
  45. Michelle Starr (2020-10-20). "The Closest Black Hole to Earth May Not Actually Be a Black Hole After All". https://www.sciencealert.com/the-closest-black-hole-to-earth-has-been-reidentified-as-a-very-special-pair-of-stars. 
  46. Chaty, S.; Mirabel, I. F.; Goldoni, P.; Mereghetti, S.; Duc, P.-A.; Martí, J.; Mignani, R. P. (2002). "Near-infrared observations of Galactic black hole candidates". Monthly Notices of the Royal Astronomical Society 331 (4): 1065–1071. doi:10.1046/j.1365-8711.2002.05267.x. Bibcode2002MNRAS.331.1065C. 
  47. Orosz, Jerome A.; Jain, Raj K.; Bailyn, Charles D.; McClintock, Jeffrey E.; Remillard, Ronald A. (2002). "Orbital Parameters for the Soft X-Ray Transient 4U 1543-47: Evidence for a Black Hole". The Astrophysical Journal 499 (1): 375–384. doi:10.1086/305620. Bibcode1998ApJ...499..375O. 
  48. Slany, P.; Stuchlik, Z. (1 October 2008). "Mass estimate of the XTE J1650-500 black hole from the Extended Orbital Resonance Model for high-frequency QPOs". Astronomy & Astrophysics 492 (2): 319–322. doi:10.1051/0004-6361:200810334. Bibcode2008A&A...492..319S. 
  49. Motta, S. E.; Belloni, T. M.; Stella, L.; Muñoz-Darias, T.; Fender, R. (2014). "Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: The case of GRO J1655-40". Monthly Notices of the Royal Astronomical Society 437 (3): 2554. doi:10.1093/mnras/stt2068. Bibcode2014MNRAS.437.2554M. 
  50. Foellmi, C.; Depagne, E.; Dall, T.H.; Mirabel, I.F (12 June 2006). "On the distance of GRO J1655-40". Astronomy & Astrophysics 457 (1): 249–255. doi:10.1051/0004-6361:20054686. Bibcode2006A&A...457..249F. 
  51. van Putten, Maurice H P M; Della Valle, Massimo (January 2019). "Observational evidence for extended emission to GW 170817". Monthly Notices of the Royal Astronomical Society: Letters 482 (1): L46–L49. doi:10.1093/mnrasl/sly166. Bibcode2019MNRAS.482L..46V. "we report on a possible detection of extended emission (EE) in gravitational radiation during GRB170817A: a descending chirp with characteristic time-scale τs = 3.01±0.2 s in a (H1,L1)-spectrogram up to 700 Hz with Gaussian equivalent level of confidence greater than 3.3 σ based on causality alone following edge detection applied to (H1,L1)-spectrograms merged by frequency coincidences. Additional confidence derives from the strength of this EE. The observed frequencies below 1 kHz indicate a hypermassive magnetar rather than a black hole, spinning down by magnetic winds and interactions with dynamical mass ejecta.". 
  52. Liu, Jifeng (27 November 2019). "A wide star–black-hole binary system from radial-velocity measurements". Nature 575 (7784): 618–621. doi:10.1038/s41586-019-1766-2. PMID 31776491. Bibcode2019Natur.575..618L. 
  53. Irrgang, A.; Geier, S.; Kreuzer, S.; Pelisoli, I.; Heber, U. (January 2020). "A stripped helium star in the potential black hole binary LB-1". Astronomy and Astrophysics 633: L5. doi:10.1051/0004-6361/201937343. Bibcode2020A&A...633L...5I. 
  54. Koljonen, K. I. I.; MacCarone, T. J. (2017). "Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3". Monthly Notices of the Royal Astronomical Society 472 (2): 2181. doi:10.1093/mnras/stx2106. Bibcode2017MNRAS.472.2181K. 
  55. Zdziarski, A. A.; Mikolajewska, J.; Belczynski, K. (2013). "Cyg X-3: A low-mass black hole or a neutron star". Monthly Notices of the Royal Astronomical Society 429: L104–L108. doi:10.1093/mnrasl/sls035. Bibcode2013MNRAS.429L.104Z. 
  56. Massi, M; Migliari, S; Chernyakova, M (2017). "The black hole candidate LS I +61°0303". Monthly Notices of the Royal Astronomical Society 468 (3): 3689. doi:10.1093/mnras/stx778. Bibcode2017MNRAS.468.3689M. 
  57. Albert, J et al. (2006). "Variable Very-High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303". Science 312 (5781): 1771–3. doi:10.1126/science.1128177. PMID 16709745. Bibcode2006Sci...312.1771A. 
  58. Casares, J; Ribo, M; Ribas, I; Paredes, J. M; Marti, J; Herrero, A (2005). "A possible black hole in the γ-ray microquasar LS 5039". Monthly Notices of the Royal Astronomical Society 364 (3): 899–908. doi:10.1111/j.1365-2966.2005.09617.x. Bibcode2005MNRAS.364..899C. 
  59. Gelino, D. M.; Harrison, T. E. (2003). "GRO J0422+32: The Lowest Mass Black Hole?". The Astrophysical Journal 599 (2): 1254–1259. doi:10.1086/379311. Bibcode2003ApJ...599.1254G.