Astronomy:List of most massive black holes

From HandWiki
Short description: None
The supermassive black hole at the core of Messier 87, here shown by an image by the Event Horizon Telescope, is among the black holes in this list.

This is an ordered list of the most massive black holes so far discovered (and probable candidates), measured in units of solar masses (M), approximately 2×1030 kilograms.

Introduction

Comparisons of large and small black holes in galaxy OJ 287 to the Solar System

A supermassive black hole (SMBH) is an extremely large black hole, on the order of hundreds of thousands to billions of solar masses (M), and is theorized to exist in the center of almost all massive galaxies. In some galaxies, there are even binary systems of supermassive black holes, see the OJ 287 system. Unambiguous dynamical evidence for SMBHs exists only in a handful of galaxies;[1] these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or root mean square) velocities of the stars or gas rises as ~1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present.[1] Nevertheless, it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole.[2] The reason for this assumption is the M–sigma relation, a tight (low scatter) relation between the mass of the hole in the ~10 galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies.[3] This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.[2]

Although SMBHs are currently theorized to exist in almost all massive galaxies, more massive black holes are rare; with only fewer than several dozen having been discovered to date. There is extreme difficulty in determining the mass of a particular SMBH, and so they still remain in the field of open research. SMBHs with accurate masses are limited only to galaxies within the Laniakea Supercluster and to active galactic nuclei.

Another problem for this list is the method used in determining the mass. Such methods, such as broad emission-line reverberation mapping (BLRM), Doppler measurements, velocity dispersion, and the aforementioned M–sigma relation have not yet been well established. Most of the time, the masses derived from the given methods contradict each other's values.

This list contains supermassive black holes with known masses, determined at least to the order of magnitude. Some objects in this list have two citations, like 3C 273; one from Bradley M. Peterson et al. using the BLRM method,[4] and the other from Charles Nelson using [OIII]λ5007 value and velocity dispersion.[5] Note that this list is very far from complete, as the Sloan Digital Sky Survey (SDSS) alone detected 200000 quasars, which likely may be the homes of billion-solar-mass black holes. In addition, there are several hundred citations for black hole measurements not yet included on this list. Despite this, the majority of well-known black holes above 1 billion M are shown. Messier galaxies with precisely known black holes are all included.

New discoveries suggest that many black holes, dubbed 'stupendously large', may exceed 100 billion or even 1 trillion solar masses.[6]

List

Due to the very large numbers involved, listed black holes here have their mass values in scientific notation (numbers multiplied to powers of 10). Values with uncertainties are written in parentheses when possible. Note that different entries in this list have different methods and systematics in obtaining their mass values, and hence different levels of confidence in their masses. These methods are specified in their notes.

List of most massive black holes
Host or black hole name Solar mass
(Sun = 1 × 100)
Notes
Phoenix A 1×1011[7] Estimated using a calorimetric model on the adiabatic behavior of core regrowth and an assumed core-Sérsic model of n=4. It is consistent with evolutionary modelling of gas accretion and the dynamics and density profiles of the galaxy.[7] Mass has not been measured directly.

Another recent estimate gives ~1.26×1010,[8] though this is still uncertain due to low resolution of X-ray/MIR data.

The above masses are larger than what is predicted by current models of black hole growth, and are thus potentially unreliable
(Theoretical limit) 5×1010 This is the maximum mass of a black hole that models predict, at least for luminous accreting SMBH's. At around 1010 M, effects of both intense radiation and star formation in the accretion disc slow down black hole growth. Given the age of the universe and the composition of available matter, there is simply not enough time to grow black holes larger than this mass.[9][10][11][12] Reported for reference.
TON 618 4.07×1010[13] Estimated from quasar C IV line correlation. An older estimate gives a mass of 6.6×1010M based on the quasar Hβ emission line correlation.[14]
Holmberg 15A (4.0±0.8)×1010[15] Mass specified obtained through orbit-based, axisymmetric Schwarzschild models. Earlier estimates range from ~310 billion M down to 3 billion M, all relying on empirical scaling relations and are thus obtained from extrapolation and not from kinematical measurements.[16]
IC 1101 (4–10)×1010[17] Estimated from properties of the host galaxy (Faber–Jackson relation); mass has not been measured directly.
S5 0014+81 4×1010[18][19][20] A 2010 paper suggested that a funnel collimates the radiation around the jet axis, creating an optical illusion of very high brightness, and thus a possible overestimation of the black hole mass.[18]
SMSS J215728.21-360215.1 (3.4±0.6)×1010[21] Estimated using near-infrared spectroscopic measurements of the MgII emission line doublet.
SDSS J102325.31+514251.0 3.31+0.67
−0.56
×1010
[22]
Estimated from quasar MgII emission line correlation.
Abell 1201 BCG (3.27±0.71)×1010[23] Estimated using strong gravitational lensing from a distant galaxy 1.3 arcseconds separated from the nucleus of the BCG. Earlier estimates suggest a mass of 1.3×1010 M.[24] Beware of ambiguity between the BH mass determination and the galaxy cluster's dark matter profile.[25]
H1821+643 3×1010[26] Value obtained as an indirect estimate using a model of minimum Eddington luminosity required to account for the Compton cooling of the surrounding cluster.[26]
NGC 6166 2.84+0.27
−0.18
×1010
[27]
Central galaxy of Abell 2199; notable for its hundred thousand light year long relativistic jet.
2MASS J13260399+7023462 (2.7±0.4)×1010[28] Estimated using the full-width half maxima of the CIV emission line and monochromatic luminosity at 1350 Å wavelength.
APM 08279+5255 2.3×1010[29]
1.0+0.17
−0.13
×1010
[30]
Based on velocity width of CO line from orbiting molecular gas,[29] and reverberation mapping using SiIV and CIV emission lines.[30]
first1 = N. J. first2 = C.-P. first3 = J. D. first4 = K. first5 = T. R. first6 = J. R. first7 = S. A. first8 = D. O. title = Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc year = 2012 journal = The Astrophysical Journal volume = 756 issue = 2 page = 179 doi = 10.1088/0004-637X/756/2/179 arxiv = 1203.1620 bibcode = 2012ApJ...756..179M s2cid = 119114155
}}</ref>
Best fit: the estimate ranges from 6 billion to 37 billion M.[31][32]
SDSS J074521.78+734336.1 (1.95±0.05)×1010[22] Estimated from quasar MgII emission line correlation.
OJ 287 primary 1.8×1010[33] A smaller 100 million M black hole orbits this one in a 12-year period (see OJ 287 secondary below). But this measurement is in question[by whom?] due to the limited number and precision of observed companion orbits.
NGC 1600 (1.7±0.15)×1010[34][35] Unprecedentedly massive in relation of its location: an elliptical galaxy host in a sparse environment.
SDSS J010013.02+280225.8 5.0×1091.58×1010[36]
SDSS J08019.69+373047.3 (1.51±0.31)×1010[22] Estimated from quasar MgII emission line correlation.
SDSS J115954.33+201921.1 (1.41±0.10)×1010[22] Estimated from quasar MgII emission line correlation.
SDSS J075303.34+423130.8 (1.38±0.03)×1010[22] Estimated from quasar Hβ emission line correlation.
SDSS J080430.56+542041.1 (1.35±0.22)×1010[22] Estimated from quasar MgII emission line correlation.


SDSS J081855.77+095848.0 (1.20±0.06)×1010[22] Estimated from quasar MgII emission line correlation.
SDSS J082535.19+512706.3 (1.12±0.20)×1010[22] Estimated from quasar Hβ emission line
SDSS J013127.34-032100.1 (1.1±0.2)×1010[37] Estimated from accretion disk spectrum modelling.[37]
ICRF J131043.3-555211 1.05+0.02
−0.05
×1010
[38]
Estimated from MgII emission line correlation.
PSO J334.2028+01.4075 1×1010[39] There are actually two black holes, orbiting at each other in a close pair with a 542-day period. The largest one is quoted, while the smaller one's mass is not defined.[39]
Black hole of central elliptical galaxy of RX J1532.9+3021 1×1010[40]
QSO B2126-158 1×1010[18]4.9+1.13
−1.01
×1010
[38]
Higher value estimated with quasar Hβ emission line correlation.
SDSS J015741.57-010629.6 (9.8±1.4)×109[22]
NGC 3842 9.7+3.0
−2.5
×109
[31][32]
Brightest galaxy in the Leo Cluster
SDSS J230301.45-093930.7 (9.12±0.88)×109[22] Estimated from quasar MgII emission line correlation.
SDSS J140821.67+025733.2 8×109[41] Estimated from quasar MgII emission line correlation.
SDSS J075819.70+202300.9 (7.8±3.9)×109[22] Estimated from quasar Hβ emission line correlation.
CID-947 6.9+0.8
−1.2
×109
[42]
Constitutes 10% of the total mass of its host galaxy. Estimated from quasar Hβ emission line correlation.
SDSS J080956.02+502000.9 (6.46±0.45)×109[22] Estimated from quasar Hβ emission line correlation.
SDSS J014214.75+002324.2 (6.31±1.16)×109[22] Estimated from quasar MgII emission line correlation.
Messier 87 7.22+0.34
−0.40
×109
[43]
6.3×109[44]
Central galaxy of the Virgo Cluster; the first black hole directly imaged.
NGC 5419 7.2+2.7
−1.9
×109
[45]
Estimated from the stellar velocity distribution. A secondary satellite SMBH may orbit around 70 parsecs.[45]
SDSS J025905.63+001121.9 (5.25±0.73)×109[22] Estimated from quasar Hβ emission line correlation.
SDSS J094202.04+042244.5 (5.13±0.71)×109[22] Estimated from quasar Hβ emission line correlation.
QSO B0746+254 5×109[18]
QSO B2149-306 5×109[18]
SDSS J090033.50+421547.0 (4.7±0.2)×109[22] Estimated from quasar MgII emission line correlation.
Messier 60 (4.5±1.0)×109[46]
SDSS J011521.20+152453.3 (4.1±2.4)×109[22] Estimated from quasar Hβ emission line correlation.
QSO B0222+185 4×109[18]
Hercules A (3C 348) 4×109 Notable for its million light-year long relativistic jet.
Abell 1836-BCG 3.61+0.41
−0.50
×109
[47]
SDSS J213023.61+122252.0 (3.5±0.2)×109[22] Estimated from quasar Hβ emission line correlation.
SDSS J173352.23+540030.4 (3.4±0.4)×109[22] Estimated from quasar MgII emission line correlation.
SDSS J025021.76-075749.9 (3.1±0.6)×109[22] Estimated from quasar MgII emission line correlation.
NGC 1271 3.0+1.0
−1.1
×109
[48]
Compact elliptical or lenticular galaxy in the Perseus Cluster.[49]
SDSS J030341.04-002321.9 (3.0±0.4)×109[22] Estimated from quasar MgII emission line correlation.
QSO B0836+710 3×109[18]
SDSS J224956.08+000218.0 (2.63±1.21)×109[22] Estimated from quasar Hβ emission line correlation.
SDSS J030449.85-000813.4 (2.4±0.50)×109[22] Estimated from quasar Hβ emission line correlation.
SDSS J234625.66-001600.4 (2.24±0.15)×109[22] Estimated from quasar Hβ emission line correlation.
ULAS J1120+0641 2×109[50][51]
QSO 0537-286 2×109[18]
NGC 3115 2×109[52]
Q0906+6930 2×109[53] Most distant blazar, at z = 5.47
QSO B0805+614 1.5×109[18]
Messier 84 1.5×109[54]
J100758.264+211529.207 ("Pōniuāʻena") (1.5±0.2)×109[55] Second most-distant quasar known
PKS 2059+034 1.36×109[56]
Abell 3565-BCG 1.34+0.21
−0.19
×109
[47]
NGC 7768 1.3+0.5
−0.4
×109
[32]
NGC 1277 1.2×109[57] Once thought to harbor a black hole so large that it contradicted modern galaxy formation and evolutionary theories,[58] re-analysis of the data revised it downward to roughly a third of the original estimate.[59] and then one tenth.[57]
QSO B225155+2217 1×109[18]
QSO B1210+330 1×109[18]
Cygnus A 1×109[60] Brightest extrasolar radio source in the sky as seen at frequencies above 1 GHz
Sombrero Galaxy 1×109[61] Bolometrically most luminous galaxy in the local universe and also the nearest billion-solar-mass black hole to Earth.
Markarian 501 9×1083.4×109[62] Brightest object in the sky in very high energy gamma rays.
PG 1426+015 (1.298±0.385)×109[4]
467740000[5]
3C 273 (8.86±1.87)×108[4]
550000000[5]
Brightest quasar in the sky
ULAS J1342+0928 8×108[63] Most distant quasar[63] − currently on record as the most distant quasar at z=7.54[63]
Messier 49 5.6×108[64]
ESO 444-46 5.01×1087.76×1010[65][66] Brightest cluster galaxy of Abell 3558 in the center of the Shapley Supercluster; estimated using spheroidal luminosity profile of the host galaxy.
NGC 1399 5×108[67] Central galaxy of the Fornax Cluster
PG 0804+761 (6.93±0.83)×108[4]
190550000[5]
PG 1617+175 (5.94±1.38)×108[4]
275420000[5]
PG 1700+518 7.81+1.82
−1.65
×108
[4]
60260000[5]
UGC 12591 (6.18±2.61)×108[68]
NGC 4261 4×108[69] Notable for its 88000 light-year long relativistic jet.[70]
PG 1307+085 (4.4±1.23)×108[4]
281 840 000[5]
SAGE0536AGN (3.5±0.8)×108[71][72] Constitutes 1.4% of the mass of its host galaxy
NGC 1275 3.4×108[73][74] Central galaxy of the Perseus Cluster
3C 390.3 (2.87±0.64)×108[4]
338840000[5]
II Zwicky 136 (4.57±0.55)×108[4]
144540000[5]
4C +74.13 4.07+2.53
−0.99
×108
, 1.58+1.00
−2.68
×1010
or 5.13+9.66
−3.35
×1010
[65][66]
Produced a colossal AGN outburst after accreting 600 million M worth of material.

Estimated using the break radius of 0.5 kpc core of the central galaxy.[65][66] Previous indirect assumptions about the efficiencies of gas accretion and jet power yield a lower limit of 1 billion M.[75][76][77]

PG 0052+251 (3.69±0.76)×108[4]
218780000[5]
Messier 59 2.7×108[78] This black hole has a retrograde rotation.[79]
PG 1411+442 (4.43±1.46)×108[4]
79430000[5]
Markarian 876 (2.79±1.29)×108[4]
240000000[5]
PG 0953+414 (2.76±0.59)×108[4]
182000000[5]
PG 0026+129 (3.93±0.96)×108[4]
53700000[5]
Fairall 9 (2.55±0.56)×108[4]
79430000[5]
NGC 7727 1.54+0.18
−0.15
×108
[80]
with 6.3×106 companion and the closest confirmed BBH to Earth at about 89 million light years away
Markarian 1095 (1.5±0.19)×108[4]
182000000[5]
Andromeda Galaxy 1.41+0.63
−4.4
×108
, 6.22+3.19
−2.11
×107
, 9.4+8.1
−4.35
×107
, 6.98+7.88
−3.29
×107
, 3.74+11.43
−1.39
×107
, 1.19+2.41
−0.8
×108
, 4.36+3.57
−1.96
×107
, 2.96+3.08
−1.51
×107
[81]
Nearest large galaxy to the Milky Way. Masses measured with different methods.
Messier 105 1.4×1082×108[82]
Markarian 509 (1.43±0.12)×108[4]
57550000[5]
OJ 287 secondary 1×108[33] The smaller black hole orbiting OJ 287 primary (see above).
RX J124236.9-111935 1×108[83] Observed by the Chandra X-ray Observatory to be tidally disrupting a star.[83][84]
Messier 85 1×108[85]
NGC 5548 (6.71±0.26)×107[4]
123000000[5]
PG 1211+143 (1.46±0.44)×108[4]
40740000[5]
Messier 88 8×107[86]
Messier 81 (Bode's Galaxy) 7×107[87]
Markarian 771 (7.32±3.52)×107[4]
7.586×107[5]
Messier 58 7×107[88]
PG 0844+349 (9.24±3.81)×107[4]
2.138×107[5]
Centaurus A 5.5×107[89] Also notable for its million light-year long relativistic jet.[90]
Markarian 79 (5.24±1.44)×107[4]
5.25×107[5]
Messier 96 48000000[91] Estimates can be as low as 1.5 million solar masses
Markarian 817 (4.94±0.77)×107[4]
4.365×107[5]
NGC 3227 (4.22±2.14)×107[4]
3.89×107[5]
NGC 4151 primary 4×107[92][93]
3C 120 5.55+3.14
−2.25
×107
[4]
2.29×107[5]
Markarian 279 (3.49±0.92)×107[4]
4.17×107[5]
NGC 3516 (4.27±1.46)×107[4]
2.3×107[5]
NGC 863 (4.75±0.74)×107[4]
1.77×107[5]
Messier 82 (Cigar Galaxy) 3×107[94] Prototype starburst galaxy.[95]
Messier 108 2.4×107[96]
M60-UCD1 2×107[97] Constitutes 15% of the mass of its host galaxy.
NGC 3783 (2.98±0.54)×107[4]
9300000[5]
Markarian 110 (2.51±0.61)×107[4]
5620000[5]
Markarian 335 (1.42±0.37)×107[4]
6310000[5]
NGC 4151 secondary 10000000[93]
NGC 7469 (12.2±1.4)×106[4]
6460000[5]
IC 4329 A 9.90+17.88
−11.88
×106
[4]
5010000[5]
NGC 4593 5.36+9.37
−6.95
×106
[4]
8130000[5]
Messier 61 5×106[98]
Messier 32 1.5×1065×106[99] A dwarf satellite galaxy of the Andromeda Galaxy.
Sagittarius A* 4.3×106[100] The black hole at the center of the Milky Way.

See also

References

  1. 1.0 1.1 Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. p. 23. ISBN 978-0-691-15860-0. http://press.princeton.edu/titles/10040.html. 
  2. 2.0 2.1 King, Andrew (2003-09-15). "Black Holes, Galaxy Formation, and the MBH-σ Relation". The Astrophysical Journal Letters 596 (1): L27–L29. doi:10.1086/379143. Bibcode2003ApJ...596L..27K. 
  3. Ferrarese, Laura; Merritt, David (2000-08-10). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies". The Astrophysical Journal (The American Astronomical Society) 539 (1): L9–12. doi:10.1086/312838. Bibcode2000ApJ...539L...9F. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 Peterson, Bradley M. (2013). "Measuring the Masses of Supermassive Black Holes". Space Science Reviews 183 (1–4): 253. doi:10.1007/s11214-013-9987-4. Bibcode2014SSRv..183..253P. http://www.astronomy.ohio-state.edu/~peterson/Docs/petersonISSI.pdf. Retrieved 2015-03-12. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 Nelson, Charles H. (2000). "Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei". The Astrophysical Journal 544 (2): L91–L94. doi:10.1086/317314. Bibcode2000ApJ...544L..91N. 
  6. September 2020, Paul Sutter 29 (29 September 2020). "Black holes so big we don't know how they form could be hiding in the universe" (in en). https://www.space.com/ginormous-black-holes-could-lurk-in-universe.html. 
  7. 7.0 7.1 Brockamp, M.; Baumgardt, H.; Britzen, S.; Zensus, A. (January 2016). "Unveiling Gargantua: A new search strategy for the most massive central cluster black holes". Astronomy & Astrophysics 585: A153. doi:10.1051/0004-6361/201526873. Bibcode2016A&A...585A.153B. 
  8. Rusinek, Katarzyna; Sikora, Marek; Kozieł-Wierzbowska, Dorota; Gupta, Maitrayee (8 September 2020). "On the Diversity of Jet Production Efficiency in Swift/BAT AGNs". The Astrophysical Journal 900 (2): 13. doi:10.3847/1538-4357/aba75f. ISSN 1538-4357. Bibcode2020ApJ...900..125R. 
  9. King, Andrew (February 2016). "How big can a black hole grow?". Monthly Notices of the Royal Astronomical Society: Letters 456 (1): L109–L112. doi:10.1093/mnrasl/slv186. Bibcode2016MNRAS.456L.109K. 
  10. Trosper, Jaime (May 5, 2014). "Is There a Limit to How Large Black Holes Can Become?". https://futurism.com/is-there-a-size-limit-to-how-large-a-black-hole-can-become. 
  11. Clery, Daniel (December 21, 2015). "Limit to how big black holes can grow is astonishing". https://www.science.org/content/article/limit-how-big-black-holes-can-grow-astonishing. 
  12. "Black holes could grow as large as 50 billion suns before their food crumbles into stars, research shows". University of Leicester. https://www2.le.ac.uk/offices/press/press-releases/2015/december/black-holes-could-grow-as-large-as-50-billion-suns-before-their-food-crumbles-into-stars-research-shows. 
  13. Ge, Xue; Bi-Xuan, Zhao; Wei-Hao, Bian; Green Richard, Frederick (21 March 2019). "The Blueshift of the C IV Broad Emission Line in QSOs". The Astronomical Journal 157 (4): 14. doi:10.3847/1538-3881/ab0956. Bibcode2019AJ....157..148G. 
  14. Shemmer, O.; Netzer, H.; Maiolino, R.; Oliva, E.; Croom, S.; Corbett, E.; di Fabrizio, L. (2004). "Near-infrared spectroscopy of high-redshift active galactic nuclei. I. A metallicity-accretion rate relationship". The Astrophysical Journal 614 (2): 547–557. doi:10.1086/423607. Bibcode2004ApJ...614..547S. 
  15. Mehrgan, K.; Thomas, J.; Saglia, R.; Massalay, X.; Erwin, P.; Bender, R.; Kluge, M.; Fabricius, M. (2019). "A 40-billion solar mass black hole in the extreme core of Holm 15A, the central galaxy of Abell 85". The Astrophysical Journal 887 (2): 195. doi:10.3847/1538-4357/ab5856. Bibcode2019ApJ...887..195M. 
  16. López-Cruz, O.; Añorve, C.; Birkinshaw, M.; Worrall, D. M.; Ibarra-Medel, H. J.; Barkhouse, W. A.; Torres-Papaqui, J. P.; Motta, V. (2014). "The Brightest Cluster Galaxy in Abell 85: The Largest Core Known So Far". The Astrophysical Journal 795 (2): L31. doi:10.1088/2041-8205/795/2/L31. Bibcode2014ApJ...795L..31L. 
  17. Dullo, Bililign T.; Graham, Alister W.; Knapen, Johan H. (October 2017). "A remarkably large depleted core in the Abell 2029 BCG IC 1101". Monthly Notices of the Royal Astronomical Society 471 (2): 2321–2333. doi:10.1093/mnras/stx1635. Bibcode2017MNRAS.471.2321D. 
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 Ghisellini, G.; Ceca, R. Della; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F. et al. (2010). "Chasing the heaviest black holes in active galactic nuclei, the largest black hole". Monthly Notices of the Royal Astronomical Society 405 (1): 387. doi:10.1111/j.1365-2966.2010.16449.x. Bibcode2010MNRAS.405..387G. 
  19. Ghisellini, G. et al. (14 July 2009). "The blazar S5 0014+813: a real or apparent monster?". Monthly Notices of the Royal Astronomical Society: Letters. v2 399 (1): L24–L28. doi:10.1111/j.1745-3933.2009.00716.x. Bibcode2009MNRAS.399L..24G. 
  20. Gaensler, Bryan (2012-07-03). Extreme Cosmos: A Guided Tour of the Fastest, Brightest, Hottest, Heaviest, Oldest, and Most Amazing Aspects of Our Universe. Penguin. ISBN 978-1-101-58701-0. https://books.google.com/books?id=RNvQsCMq920C&pg=PT103. 
  21. Christopher A Onken; Fuyan Bian; Xiaohui Fan; Feige Wang; Christian Wolf; Jinyi Yang (August 2020), "thirty-four billion solar mass black hole in SMSS J2157–3602, the most luminous known quasar", Monthly Notices of the Royal Astronomical Society 496 (2): 2309, doi:10.1093/mnras/staa1635, Bibcode2020MNRAS.496.2309O 
  22. 22.00 22.01 22.02 22.03 22.04 22.05 22.06 22.07 22.08 22.09 22.10 22.11 22.12 22.13 22.14 22.15 22.16 22.17 22.18 22.19 22.20 22.21 22.22 22.23 Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan (2014). "Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous $z \sim$ 3.5 Quasars". The Astrophysical Journal 799 (2): 189. doi:10.1088/0004-637X/799/2/189. Bibcode2015ApJ...799..189Z. 
  23. J W Nightingale; Russell J Smith; Qiuhan He; Conor M O'Riordan; Jacob A Kegerreis; Aristeidis Amvrosiadis; Alastair C Edge; Amy Etherington et al. (May 2023), "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens", Monthly Notices of the Royal Astronomical Society 521 (3): 3298–3322, doi:10.1093/mnras/stad587  (published online 29 March 2023 )
  24. Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "A counterimage to the gravitational arc in Abell 1201: Evidence for IMF variations or a 1010 Msun black hole?". Monthly Notices of the Royal Astronomical Society 467 (1): 836–848. doi:10.1093/mnras/stx059. Bibcode2017MNRAS.467..836S. 
  25. Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "Stellar dynamics in the strong-lensing central galaxy of Abell 1201: A low stellar mass-to-light ratio a large central compact mass and a standard dark matter halo". Monthly Notices of the Royal Astronomical Society 1706 (1): 383–393. doi:10.1093/mnras/stx1573. Bibcode2017MNRAS.471..383S. http://esoads.eso.org/abs/2017arXiv170607055S. 
  26. 26.0 26.1 Walker, S. A.; Fabian, A. C.; Russell, H. R.; Sanders, J. S. (2014). "The effect of the quasar H1821+643 on the surrounding intracluster medium: Revealing the underlying cooling flow". Monthly Notices of the Royal Astronomical Society 442 (3): 2809. doi:10.1093/mnras/stu1067. Bibcode2014MNRAS.442.2809W. 
  27. Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.~M.; Gebhardt, K. et al. (June 1998). "The Demography of Massive Dark Objects in Galaxy Centers". The Astronomical Journal 115 (6): 2285–2305. doi:10.1086/300353. Bibcode1998AJ....115.2285M. 
  28. Jeram, Sarik; Gonzalez, Anthony; Eikenberry, Stephen; Stern, Daniel; Mendes De Oliveira, Claudia Lucia; Izuti Nakazono, Lilianne Mariko; Ackley, Kendall (2020). "An Extremely Bright QSO at z = 2.89". The Astrophysical Journal 899 (1): 76. doi:10.3847/1538-4357/ab9c95. Bibcode2020ApJ...899...76J. 
  29. 29.0 29.1 Riechers, D. A.; Walter, F.; Carilli, C. L.; Lewis, G. F. (2009). "Imaging The Molecular Gas in a z = 3.9 Quasar Host Galaxy at 0farcs3 Resolution: A Central Sub-Kiloparsec Scale Star Formation Reservoir in APM 08279+5255". The Astrophysical Journal 690 (1): 463–485. doi:10.1088/0004-637X/690/1/463. Bibcode2009ApJ...690..463R. 
  30. 30.0 30.1 Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M. (2016). "A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags". Astronomy and Astrophysics 587: A43. doi:10.1051/0004-6361/201527152. Bibcode2016A&A...587A..43S. 
  31. 31.0 31.1 Cite error: Invalid <ref> tag; no text was provided for refs named McConnell
  32. 32.0 32.1 32.2 Cite error: Invalid <ref> tag; no text was provided for refs named mcconnell2012
  33. 33.0 33.1 Valtonen, M. J.; Ciprini, S.; Lehto, H. J. (2012). "On the masses of OJ287 black holes". Monthly Notices of the Royal Astronomical Society 427 (1): 77–83. doi:10.1111/j.1365-2966.2012.21861.x. Bibcode2012MNRAS.427...77V. 
  34. Thomas, J.; Ma, C.-P.; McConnell, N. J.; Greene, J. E.; Blakeslee, J. P.; Janish, R. (2016). "A 17-billion-solar-mass black hole in a group galaxy with a diffuse core". Nature 532 (7599): 340–342. doi:10.1038/nature17197. PMID 27049949. Bibcode2016Natur.532..340T. 
  35. Morrow, Ashley (5 April 2016). "Behemoth Black Hole Found in an Unlikely Place". http://www.nasa.gov/feature/goddard/2016/behemoth-black-hole-found-in-an-unlikely-place. 
  36. Eilers, Anna-Christina; Simcoe, Robert A.; Yue, Minghao; Mackenzie, Ruari; Matthee, Jorryt; Durovcikova, Dominika; Kashino, Daichi; Bordoloi, Rongmon et al. (2023). "EIGER. III. JWST/NIRCam Observations of the Ultraluminous High-redshift Quasar J0100+2802". The Astrophysical Journal 950 (1): 68. doi:10.3847/1538-4357/acd776. Bibcode2023ApJ...950...68E. 
  37. 37.0 37.1 Ghisellini, G.; Tagliaferri, G.; Sbarrato, T.; Gehrels, N. (2015). "SDSS J013127.34-032100.1: A candidate blazar with a 11 billion solar mass black hole at $z$=5.18". Monthly Notices of the Royal Astronomical Society: Letters 450: L34–L38. doi:10.1093/mnrasl/slv042. Bibcode2015MNRAS.450L..34G. 
  38. 38.0 38.1 Mejía-Restrepo Julian E. (11 April 2022). "BASS. XXV. DR2 Broad-line-based Black Hole Mass Estimates and Biases from Obscuration". The Astrophysical Journal Supplement Series 261 (1): 29. doi:10.3847/1538-4365/ac6602. ISSN 1538-4365. Bibcode2022ApJS..261....5M. 
  39. 39.0 39.1 Liu, Tingting; Gezari, Suvi; Heinis, Sebastien; Magnier, Eugene A.; Burgett, William S.; Chambers, Kenneth; Flewelling, Heather; Huber, Mark et al. (2015). "A Periodically Varying Luminous Quasar at z=2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime". The Astrophysical Journal 803 (2): L16. doi:10.1088/2041-8205/803/2/L16. Bibcode2015ApJ...803L..16L. 
  40. Hlavacek-Larrondo, J.; Allen, S. W.; Taylor, G. B.; Fabian, A. C.; Canning, R. E. Ato.; Werner, N.; Sanders, J. S.; Grimes, C. K. et al. (2013). "Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021". The Astrophysical Journal 777 (2): 163. doi:10.1088/0004-637X/777/2/163. Bibcode2013ApJ...777..163H. 
  41. Guo, Hengxiao; J. Barth, Aaron (2021). "The Quasar SDSS J140821.67+025733.2 Does Not Contain a 196 Billion Solar Mass Black Hole". American Astronomical Society 5 (1): 2. doi:10.3847/2515-5172/abd7f9. Bibcode2021RNAAS...5....2G. 
  42. Trakhtenbrot, Benny; Megan Urry, C.; Civano, Francesca; Rosario, David J.; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela et al. (2015). "An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang". Science 349 (168): 168–171. doi:10.1126/science.aaa4506. PMID 26160942. Bibcode2015Sci...349..168T. 
  43. Oldham, L. J.; Auger, M. W. (2016). "Galaxy structure from multiple tracers – II. M87 from parsec to megaparsec scales". Monthly Notices of the Royal Astronomical Society 457 (1): 421–439. doi:10.1093/mnras/stv2982. Bibcode2016MNRAS.457..421O. 
  44. Walsh, Jonelle L.; Barth, Aaron J.; Ho, Luis C.; Sarzi, Marc (June 2013). "The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations". The Astrophysical Journal 770 (2): 86. doi:10.1088/0004-637X/770/2/86. Bibcode2013ApJ...770...86W. 
  45. 45.0 45.1 Mazzalay, X.; Thomas, J.; Saglia, R. P.; Wegner, G. A.; Bender, R.; Erwin, P.; Fabricius, M. H.; Rusli, S. P. (2016). "The supermassive black hole and double nucleus of the core elliptical NGC 5419". Monthly Notices of the Royal Astronomical Society 462 (3): 2847–2860. doi:10.1093/mnras/stw1802. Bibcode2016MNRAS.462.2847M. 
  46. Juntai Shen; Karl Gebhardt (2010). "The Supermassive Black Hole and Dark Matter Halo of NGC 4649 (M60)". The Astrophysical Journal 711 (1): 484–494. doi:10.1088/0004-637X/711/1/484. Bibcode2010ApJ...711..484S. 
  47. 47.0 47.1 Dalla Bontà, E.; Ferrarese, L.; Corsini, E. M.; Miralda-Escudé, J.; Coccato, L.; Sarzi, M.; Pizzella, A.; Beifiori, A. (2009). "The High-Mass End of the Black Hole Mass Function: Mass Estimates in Brightest Cluster Galaxies". The Astrophysical Journal 690 (1): 537–559. doi:10.1088/0004-637X/690/1/537. Bibcode2009ApJ...690..537D. 
  48. Walsh, Jonelle L.; Bosch, Remco C. E. van den; Gebhardt, Karl; Yildirim, Akin; Gültekin, Kayhan; Husemann, Bernd; Richstone, Douglas O. (2015-08-03). "The Black Hole in the Compact, High-Dispersion Galaxy NGC 1271" (in en). The Astrophysical Journal 808 (2): 183. doi:10.1088/0004-637X/808/2/183. ISSN 1538-4357. Bibcode2015ApJ...808..183W. http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1506.05129. 
  49. Graham, Alister W.; Ciambur, Bogdan C.; Savorgnan, Giulia A. D. (2016). "Disky Elliptical Galaxies and the Allegedly Over-massive Black Hole in the Compact "ES" Galaxy NGC 1271" (in en). The Astrophysical Journal 831 (2): 132. doi:10.3847/0004-637X/831/2/132. ISSN 0004-637X. Bibcode2016ApJ...831..132G. 
  50. Daniel J. Mortlock et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature 474 (7353): 616–619. doi:10.1038/nature10159. PMID 21720366. Bibcode2011Natur.474..616M. 
  51. John Matson (2011-06-29). "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe". Scientific American. http://www.scientificamerican.com/article.cfm?id=farthest-quasar. Retrieved 2011-06-30. 
  52. Kormendy, John; Richstone, Douglas (1992). "Evidence for a supermassive black hole in NGC 3115". The Astrophysical Journal 393: 559–578. doi:10.1086/171528. Bibcode1992ApJ...393..559K. 
  53. Romani, Roger W. (2006). "The Spectral Energy Distribution of the High-z Blazar Q0906+6930". The Astronomical Journal 132 (5): 1959–1963. doi:10.1086/508216. Bibcode2006AJ....132.1959R. 
  54. Bower, G.A. et al. (1998). "Kinematics of the Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)". Astrophysical Journal 492 (1): 111–114. doi:10.1086/311109. Bibcode1998ApJ...492L.111B. 
  55. Jinyi Yang; Feige Wang; Xiaohui Fan; Joseph F. Hennawi; Frederick B. Davies; Minghao Yue; Eduardo Banados; Xue-Bing Wu et al. (2020). "Pōniuāʻena: A Luminous z=7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole". The Astrophysical Journal Letters 897 (1): L14. doi:10.3847/2041-8213/ab9c26. Bibcode2020ApJ...897L..14Y. 
  56. Oshlack, A. Y. K. N.; Webster, R. L.; Whiting, M. T. (2002). "Black Hole Mass Estimates of Radio‐selected Quasars". The Astrophysical Journal 576 (1): 81–88. doi:10.1086/341729. Bibcode2002ApJ...576...81O. 
  57. 57.0 57.1 Graham, Alister W.; Durré, Mark; Savorgnan, Giulia A. D.; Medling, Anne M.; Batcheldor, Dan; Scott, Nicholas; Watson, Beverly; Marconi, Alessandro (1 March 2016). "A Normal Supermassive Black Hole in NGC 1277". The Astrophysical Journal 819 (1): 43. doi:10.3847/0004-637X/819/1/43. ISSN 0004-637X. Bibcode2016ApJ...819...43G. 
  58. van den Bosch, Remco C. E. et al. (29 Nov 2012). "An over-massive black hole in the compact lenticular galaxy NGC 1277". Nature 491 (7426): 729–731. doi:10.1038/nature11592. PMID 23192149. Bibcode2012Natur.491..729V. 
  59. Emsellem, Eric (Aug 2013). "Is the black hole in NGC 1277 really overmassive?". Monthly Notices of the Royal Astronomical Society 433 (3): 1862–1870. doi:10.1093/mnras/stt840. Bibcode2013MNRAS.433.1862E. 
  60. "Black Holes: Gravity's Relentless Pull interactive: Encyclopedia". HubbleSite. http://hubblesite.org/explore_astronomy/black_holes/encyc_mod1_q12.html. 
  61. J. Kormendy; R. Bender; E. A. Ajhar; A. Dressler; S. M. Faber; K. Gebhardt; C. Grillmair; T. R. Lauer et al. (1996). "Hubble Space Telescope Spectroscopic Evidence for a 1 X 10 9 Msun Black Hole in NGC 4594". Astrophysical Journal Letters 473 (2): L91–L94. doi:10.1086/310399. Bibcode1996ApJ...473L..91K. 
  62. Rieger, F. M.; Mannheim, K. (2003). "On the central black hole mass in Mkn 501". Astronomy and Astrophysics 397: 121–126. doi:10.1051/0004-6361:20021482. Bibcode2003A&A...397..121R. 
  63. 63.0 63.1 63.2 Bañados, Eduardo (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature 553 (7689): 473–476. doi:10.1038/nature25180. PMID 29211709. Bibcode2018Natur.553..473B. 
  64. Loewenstein, Michael et al. (July 2001). "Chandra Limits on X-Ray Emission Associated with the Supermassive Black Holes in Three Giant Elliptical Galaxies". The Astrophysical Journal 555 (1): L21–L24. doi:10.1086/323157. Bibcode2001ApJ...555L..21L. https://zenodo.org/record/1235686. 
  65. 65.0 65.1 65.2 Dullo, B.T. (22 November 2019). "The Most Massive Galaxies with Large Depleted Cores: Structural Parameter Relations and Black Hole Masses". The Astrophysical Journal 886 (2): 80. doi:10.3847/1538-4357/ab4d4f. Bibcode2019ApJ...886...80D. 
  66. 66.0 66.1 66.2 Dullo, B.T.; de Paz, A.G.; Knapen, J.H. (18 February 2021). "Ultramassive black holes in the most massive galaxies: MBH−σ versus MBH−Rb". The Astrophysical Journal 908 (2): 134. doi:10.3847/1538-4357/abceae. Bibcode2021ApJ...908..134D. 
  67. GEBHARDT, K.; LAUER, T. R.; PINKNEY, J.; BENDER, R.; RICHSTONE, D.; ALLER, M.; BOWER, G.; DRESSLER, A. (December 2007). "The Black Hole Mass and Extreme Orbital Structure in NGC 1399". The Astrophysical Journal 671 (2): 1321–1328. doi:10.1086/522938. Bibcode2007ApJ...671.1321G. 
  68. Ray, Shankar; Bagchi, Joydeep; Dhiwar, Suraj; Pandge, M. B.; Mirakhor, Mohammad; Walker, Stephen A.; Mukherjee, Dipanjan (2022). "Hubble Space Telescope Captures UGC 12591: Bulge/Disc properties, star formation and 'missing baryons' census in a very massive and fast-spinning hybrid galaxy". Monthly Notices of the Royal Astronomical Society 517 (1): 99–117. doi:10.1093/mnras/stac2683. Bibcode2022MNRAS.517...99R. 
  69. "Massive Black Holes Dwell in Most Galaxies, According to Hubble Census". Hubblesite STScI-1997-01. 1997-01-13. http://hubblesite.org/newscenter/archive/releases/1997/01/text/. 
  70. "The Giant Elliptical Galaxy NGC 4261". Astronomy 162 (Dept. Physics & Astronomy University of Tennessee). http://csep10.phys.utk.edu/astr162/lect/active/ngc4261.html. 
  71. van, Loon J. T.; Sansom, A. E. (2015). "An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole". Monthly Notices of the Royal Astronomical Society 453 (3): 2341–2348. doi:10.1093/mnras/stv1787. Bibcode2015MNRAS.453.2341V. 
  72. "Black hole is 30 times expected size". https://phys.org/news/2015-09-black-hole-size.html. 
  73. Wilman, R. J.; Edge, A. C.; Johnstone, R. M. (2005). "The nature of the molecular gas system in the core of NGC 1275". Monthly Notices of the Royal Astronomical Society 359 (2): 755–764. doi:10.1111/j.1365-2966.2005.08956.x. Bibcode2005MNRAS.359..755W. 
  74. Wilman, R. J.; Edge, A. C.; Johnstone, R. M. (2005). "The nature of the molecular gas system in the core of NGC 1275". Monthly Notices of the Royal Astronomical Society 359 (2): 755–764. doi:10.1111/j.1365-2966.2005.08956.x. Bibcode2005MNRAS.359..755W. 
  75. Most Powerful Eruption In The Universe Discovered NASA/Marshall Space Flight Center (ScienceDaily) January 6, 2005
  76. McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W.; Rafferty, D. A.; Carilli, C.; Sarazin, C. L. (2005). "The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts". Nature 433 (7021): 45–47. doi:10.1038/nature03202. PMID 15635404. Bibcode2005Natur.433...45M. 
  77. Rafferty, D. A.; McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W. (2006). "The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies". The Astrophysical Journal 652 (1): 216–231. doi:10.1086/507672. Bibcode2006ApJ...652..216R. 
  78. Wrobel, J. M.; Terashima, Y.; Ho, L. C. (2008). "Outflow-dominated Emission from the Quiescent Massive Black Holes in NGC 4621 and NGC 4697". The Astrophysical Journal 675 (2): 1041–1047. doi:10.1086/527542. Bibcode2008ApJ...675.1041W. 
  79. Wernli, F.; Emsellem, E.; Copin, Y. (2002). "A 60 pc counter-rotating core in NGC 4621". Astronomy & Astrophysics 396: 73–81. doi:10.1051/0004-6361:20021333. Bibcode2002A&A...396...73W. 
  80. Voggel, K. T.; Seth, A. C.; Baumgardt, H.; Husemann, B.; Neumayer, N.; Hilker, M.; Pechetti, R.; Mieske, S. et al. (2021-11-30). "First direct dynamical detection of a dual super-massive black hole system at sub-kpc separation". Astronomy & Astrophysics 658: A152. doi:10.1051/0004-6361/202140827. ISSN 0004-6361. 
  81. Al-Baidhany, Ismaeel A.; Chiad, Sami S.; Jabbar, Wasmaa A.; Al-Kadumi, Ahmed K.; Habubi, Nadir F.; Mansour, Hazim L. (4 December 2020). "Determine the mass of supermassive black hole in the centre of M31 in different methods". AIP Conference Proceedings. International Conference of Numerical Analysis and Applied Mathematics Icnaam 2019 2290 (1): 050050. doi:10.1063/5.0027838. Bibcode2020AIPC.2290e0050A. https://pubs.aip.org/aip/acp/article/2290/1/050050/1003183/Determine-the-mass-of-supermassive-black-hole-in. 
  82. Thilker, David A.; Donovan, Jennifer; Schiminovich, David; Bianchi, Luciana; Boissier, Samuel; Gil de Paz; Armando; Madore, Barry F. et al. (2009). "Massive star formation within the Leo 'primordial' ring". Nature 457 (7232): 990–993. doi:10.1038/nature07780. PMID 19225520. Bibcode2009Natur.457..990T. 
  83. 83.0 83.1 Komossa, S.; Halpern, J.; Schartel, N.; Hasinger, G.; Santos-Lleo, M.; Predehl, P. (May 2004). "A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6-1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario". The Astrophysical Journal Letters 603 (1): L17–L20. doi:10.1086/382046. Bibcode2004ApJ...603L..17K. 
  84. NASA: "Giant Black Hole Rips Apart Unlucky Star"
  85. Kormendy, John; Bender, Ralf (2009). "Correlations between Supermassive Black Holes, Velocity Dispersions, and Mass Deficits in Elliptical Galaxies with Cores". Astrophysical Journal Letters 691 (2): L142–L146. doi:10.1088/0004-637X/691/2/L142. Bibcode2009ApJ...691L.142K. 
  86. Merloni, Andrea; Heinz, Sebastian; di Matteo, Tiziana (2003). "A Fundamental Plane of black hole activity". Monthly Notices of the Royal Astronomical Society 345 (4): 1057–1076. doi:10.1046/j.1365-2966.2003.07017.x. Bibcode2003MNRAS.345.1057M. 
  87. N. Devereux; H. Ford; Z. Tsvetanov; J. Jocoby (2003). "STIS Spectroscopy of the Central 10 Parsecs of M81: Evidence for a Massive Black Hole". Astronomical Journal 125 (3): 1226–1235. doi:10.1086/367595. Bibcode2003AJ....125.1226D. 
  88. Merloni, Andrea; Heinz, Sebastian; di Matteo, Tiziana (2003). "A Fundamental Plane of black hole activity". Monthly Notices of the Royal Astronomical Society 345 (4): 1057–1076. doi:10.1046/j.1365-2966.2003.07017.x. Bibcode2003MNRAS.345.1057M. 
  89. "Radio Telescopes Capture Best-Ever Snapshot of Black Hole Jets". NASA. 20 May 2011. http://www.nasa.gov/topics/universe/features/radio-particle-jets.html. 
  90. Nemiroff, R.; Bonnell, J., eds (2011-04-13). "Centaurus Radio Jets Rising". Astronomy Picture of the Day. NASA. https://apod.nasa.gov/apod/ap110413.html. 
  91. Nowak, N. et al. (April 2010). "Do black hole masses scale with classical bulge luminosities only? The case of the two composite pseudo-bulge galaxies NGC 3368 and NGC 3489.". Monthly Notices of the Royal Astronomical Society 403 (2): 646–672. doi:10.1111/j.1365-2966.2009.16167.x. Bibcode2010MNRAS.403..646N. 
  92. "NGC 4151: An active black hole in the "Eye of Sauron"". Astronomy magazine. 2011-03-11. http://www.astronomy.com/News-Observing/News/2011/03/NGC%204151%20active%20black%20hole%20in%20the%20Eye%20of%20Sauron.aspx. 
  93. 93.0 93.1 Bon; Jovanović; Marziani; Shapovalova; Bon; Borka Jovanović; Borka; Sulentic et al. (2012). "The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole". The Astrophysical Journal 759 (2): 118–125. doi:10.1088/0004-637X/759/2/118. Bibcode2012ApJ...759..118B. 
  94. Gaffney, N. I.; Lester, D. F.; Telesco, C. M. (1993). "The stellar velocity dispersion in the nucleus of M82". Astrophysical Journal Letters 407: L57–L60. doi:10.1086/186805. Bibcode1993ApJ...407L..57G. 
  95. Barker, S.; de Grijs, R.; Cerviño, M. (2008). "Star cluster versus field star formation in the nucleus of the prototype starburst galaxy M 82". Astronomy and Astrophysics 484 (3): 711–720. doi:10.1051/0004-6361:200809653. Bibcode2008A&A...484..711B. 
  96. Satyapal, S. et al. (2008). "Spitzer Uncovers Active Galactic Nuclei Missed by Optical Surveys in Seven Late-Type Galaxies". Astrophysical Journal 677 (2): 926–942. doi:10.1086/529014. Bibcode2008ApJ...677..926S. 
  97. Strader, J. (2013). "The Densest Galaxy". The Astrophysical Journal 775 (1): L6. doi:10.1088/2041-8205/775/1/L6. Bibcode2013ApJ...775L...6S. 
  98. "Supermassive black holes in the Sbc spiral galaxies NGC 3310, NGC 4303 and NGC 4258". Astronomy and Astrophysics 469 (2): 405–423. 2007. doi:10.1051/0004-6361:20066784. Bibcode2007A&A...469..405P. 
  99. Valluri, M. (2004). "Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data". Astrophysical Journal 602 (1): 66–92. doi:10.1086/380896. Bibcode2004ApJ...602...66V. 
  100. Ghez, A. M. et al. (2008). "Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits". Astrophysical Journal 689 (2): 1044–1062. doi:10.1086/592738. Bibcode2008ApJ...689.1044G.