Cantellated 5-cubes
5-cube |
Cantellated 5-cube |
Bicantellated 5-cube |
Cantellated 5-orthoplex |
5-orthoplex |
Cantitruncated 5-cube |
Bicantitruncated 5-cube |
Cantitruncated 5-orthoplex |
Orthogonal projections in B5 Coxeter plane |
---|
In six-dimensional geometry, a cantellated 5-cube is a convex uniform 5-polytope, being a cantellation of the regular 5-cube.
There are 6 unique cantellation for the 5-cube, including truncations. Half of them are more easily constructed from the dual 5-orthoplex
Cantellated 5-cube
Cantellated 5-cube | ||
Type | Uniform 5-polytope | |
Schläfli symbol | rr{4,3,3,3} = [math]\displaystyle{ r\left\{\begin{array}{l}4\\3, 3, 3\end{array}\right\} }[/math] | |
Coxeter-Dynkin diagram | = | |
4-faces | 122 | 10 80 36px|link=Tetrahedral prism 32 |
Cells | 680 | 40 320 25px|link=Triangular prism 160 25px|link=Octahedron 160 |
Faces | 1520 | 80 25px|link=Square 480 25px|link=Square 320 25px|link=Triangle 640 25px|link=Triangle |
Edges | 1280 | 320+960 |
Vertices | 320 | |
Vertex figure | ||
Coxeter group | B5 [4,3,3,3] | |
Properties | convex, uniform |
Alternate names
- Small rhombated penteract (Acronym: sirn) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of a cantellated 5-cube having edge length 2 are all permutations of:
- [math]\displaystyle{ \left(\pm1,\ \pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right) }[/math]
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Bicantellated 5-cube
Bicantellated 5-cube | ||
Type | Uniform 5-polytope | |
Schläfli symbols | 2rr{4,3,3,3} = [math]\displaystyle{ r\left\{\begin{array}{l}3, 4\\3, 3\end{array}\right\} }[/math] r{32,1,1} = [math]\displaystyle{ r\left\{\begin{array}{l}3, 3\\ 3\\3\end{array}\right\} }[/math] | |
Coxeter-Dynkin diagrams | = | |
4-faces | 122 | 10 80 36px|link=3-4 duoprism 32 |
Cells | 840 | 40 240 25px|link=Cube 160 25px|link=Cuboctahedron 320 25px|link=Triangular prism 80 |
Faces | 2160 | 240 25px|link=Square 320 25px|link=Triangle 960 25px|link=Square 320 25px|link=Triangle 320 25px|link=Triangle |
Edges | 1920 | 960+960 |
Vertices | 480 | |
Vertex figure | ||
Coxeter groups | B5, [3,3,3,4] D5, [32,1,1] | |
Properties | convex, uniform |
In five-dimensional geometry, a bicantellated 5-cube is a uniform 5-polytope.
Alternate names
- Bicantellated penteract, bicantellated 5-orthoplex, or bicantellated pentacross
- Small birhombated penteractitriacontiditeron (Acronym: sibrant) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of a bicantellated 5-cube having edge length 2 are all permutations of:
- (0,1,1,2,2)
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Cantitruncated 5-cube
Cantitruncated 5-cube | ||
Type | Uniform 5-polytope | |
Schläfli symbol | tr{4,3,3,3} = [math]\displaystyle{ t\left\{\begin{array}{l}4\\3, 3, 3\end{array}\right\} }[/math] | |
Coxeter-Dynkin diagram |
= | |
4-faces | 122 | 10 80 36px|link=Tetrahedral prism 32 |
Cells | 680 | 40 320 25px|link=Triangular prism 160 25px|link=Truncated tetrahedron 160 |
Faces | 1520 | 80 480 25px|link=Square 320 25px|link=Hexagon 640 |
Edges | 1600 | 320+320+960 |
Vertices | 640 | |
Vertex figure | ||
Coxeter group | B5 [4,3,3,3] | |
Properties | convex, uniform |
Alternate names
- Tricantitruncated 5-orthoplex / tricantitruncated pentacross
- Great rhombated penteract (girn) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of a cantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:
- [math]\displaystyle{ \left(1,\ 1+\sqrt{2},\ 1+2\sqrt{2},\ 1+2\sqrt{2},\ 1+2\sqrt{2}\right) }[/math]
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Related polytopes
It is third in a series of cantitruncated hypercubes:
Bicantitruncated 5-cube
Bicantitruncated 5-cube | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | 2tr{3,3,3,4} = [math]\displaystyle{ t\left\{\begin{array}{l}3, 4\\3, 3\end{array}\right\} }[/math] t{32,1,1} = [math]\displaystyle{ t\left\{\begin{array}{l}3, 3\\ 3\\3\end{array}\right\} }[/math] | |
Coxeter-Dynkin diagrams | = | |
4-faces | 122 | 10 80 36px|link=3-4 duoprism 32 |
Cells | 840 | 40 240 25px|link=Cube 160 25px|link=Truncated octahedron 320 25px|link=Triangular prism 80 |
Faces | 2160 | 240 25px|link=Square 320 25px|link=Hexagon 960 25px|link=Square 320 25px|link=Hexagon 320 |
Edges | 2400 | 960+480+960 |
Vertices | 960 | |
Vertex figure | ||
Coxeter groups | B5, [3,3,3,4] D5, [32,1,1] | |
Properties | convex, uniform |
Alternate names
- Bicantitruncated penteract
- Bicantitruncated pentacross
- Great birhombated penteractitriacontiditeron (Acronym: gibrant) (Jonathan Bowers)
Coordinates
Cartesian coordinates for the vertices of a bicantitruncated 5-cube, centered at the origin, are all sign and coordinate permutations of
- (±3,±3,±2,±1,0)
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Related polytopes
These polytopes are from a set of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "5D uniform polytopes (polytera)". https://bendwavy.org/klitzing/dimensions/polytera.htm. o3o3x3o4x - sirn, o3x3o3x4o - sibrant, o3o3x3x4x - girn, o3x3x3x4o - gibrant
External links
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions, Jonathan Bowers
- Runcinated uniform polytera (spid), Jonathan Bowers
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |
Original source: https://en.wikipedia.org/wiki/Cantellated 5-cubes.
Read more |