List of dimensionless quantities
From HandWiki
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Biology and medicine
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Basic reproduction number | [math]\displaystyle{ R_0 }[/math] | number of infections caused on average by an infectious individual over entire infectious period | epidemiology |
Body fat percentage | total mass of fat divided by total body mass, multiplied by 100 | biology | |
Kt/V | Kt/V | medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time) | |
Waist–hip ratio | waist circumference divided by hip circumference | biology | |
Waist-to-chest ratio | waist circumference divided by chest circumference | biology | |
Waist-to-height ratio | waist circumference divided by height | biology |
Chemistry
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Activity coefficient | [math]\displaystyle{ \gamma }[/math] | [math]\displaystyle{ \gamma= \frac {{a}}{{x}} }[/math] | chemistry (Proportion of "active" molecules or atoms) |
Arrhenius number | [math]\displaystyle{ \alpha }[/math] | [math]\displaystyle{ \alpha = \frac{E_a}{RT} }[/math] | chemistry (ratio of activation energy to thermal energy)[1] |
Atomic weight | M | chemistry (mass of atom over one atomic mass unit, u, where carbon-12 is exactly 12 u) | |
Bodenstein number | Bo or Bd | [math]\displaystyle{ \mathrm{Bo} = vL/\mathcal{D} = \mathrm{Re}\, \mathrm{Sc} }[/math] | chemistry (residence-time distribution; similar to the axial mass transfer Peclet number)[2] |
Damkohler number | Da | [math]\displaystyle{ \mathrm{Da} = k \tau }[/math] | chemistry (reaction time scales vs. residence time) |
Hatta number | Ha | [math]\displaystyle{ \mathrm{Ha} = \frac{N_{\mathrm{A}0}}{N_{\mathrm{A}0}^{\mathrm{phys}}} }[/math] | chemical engineering (adsorption enhancement due to chemical reaction) |
Jakob number | Ja | [math]\displaystyle{ \mathrm{Ja} = \frac{c_p (T_\mathrm{s} - T_\mathrm{sat}) }{\Delta H_{\mathrm{f}} } }[/math] | chemistry (ratio of sensible to latent energy absorbed during liquid-vapor phase change)[3] |
pH | [math]\displaystyle{ \mathrm{pH} }[/math] | [math]\displaystyle{ \mathrm{pH} = - \log_{10}(a_{\textrm{H}^+}) }[/math] | chemistry (the measure of the acidity or basicity of an aqueous solution) |
van 't Hoff factor | i | [math]\displaystyle{ i = 1 + \alpha (n - 1) }[/math] | quantitative analysis (Kf and Kb) |
Wagner number | Wa | [math]\displaystyle{ \mathrm{Wa} = \frac{\kappa}{l} \frac{\mathrm{d}\eta}{\mathrm{d}i} }[/math] | electrochemistry (ratio of kinetic polarization resistance to solution ohmic resistance in an electrochemical cell)[4] |
Weaver flame speed number | Wea | [math]\displaystyle{ \mathrm{Wea} = \frac{w}{w_\mathrm{H}} 100 }[/math] | combustion (laminar burning velocity relative to hydrogen gas)[5] |
Physics
Physical constants
Fluids and heat transfer
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Archimedes number | Ar | [math]\displaystyle{ \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2} }[/math] | fluid mechanics (motion of fluids due to density differences) |
Asakuma number | As | [math]\displaystyle{ \mathrm{As} = \frac{W} {\alpha \rho d_p H } }[/math] | heat transfer (ratio of heat generation of microwave dielectric heating to thermal diffusion[disambiguation needed] )[6] |
Atwood number | A | [math]\displaystyle{ \mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2} }[/math] | fluid mechanics (onset of instabilities in fluid mixtures due to density differences) |
Bagnold number | Ba | [math]\displaystyle{ \mathrm{Ba} = \frac{\rho d^2 \lambda^{1/2} \dot{\gamma} }{\mu} }[/math] | fluid mechanics, geology (ratio of grain collision stresses to viscous fluid stresses in flow of a granular material such as grain and sand)[7] |
Bejan number (fluid mechanics) |
Be | [math]\displaystyle{ \mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha} }[/math] | fluid mechanics (dimensionless pressure drop along a channel)[8] |
Bejan number (thermodynamics) |
Be | [math]\displaystyle{ \mathrm{Be} = \frac{\dot S'_{\mathrm{gen},\, \Delta T}}{\dot S'_{\mathrm{gen},\, \Delta T}+ \dot S'_{\mathrm{gen},\, \Delta p}} }[/math] | thermodynamics (ratio of heat transfer irreversibility to total irreversibility due to heat transfer and fluid friction)[9] |
Bingham number | Bm | [math]\displaystyle{ \mathrm{Bm} = \frac{ \tau_y L }{ \mu V } }[/math] | fluid mechanics, rheology (ratio of yield stress to viscous stress)[1] |
Biot number | Bi | [math]\displaystyle{ \mathrm{Bi} = \frac{h L_C}{k_b} }[/math] | heat transfer (surface vs. volume conductivity of solids) |
Blake number | Bl or B | [math]\displaystyle{ \mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D} }[/math] | geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media) |
Bond number | Bo | [math]\displaystyle{ \mathrm{Bo} = \frac{\rho a L^2}{\gamma} }[/math] | geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number) [10] |
Brinkman number | Br | [math]\displaystyle{ \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)} }[/math] | heat transfer, fluid mechanics (conduction from a wall to a viscous fluid) |
Brownell–Katz number | NBK | [math]\displaystyle{ \mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma} }[/math] | fluid mechanics (combination of capillary number and Bond number) [11] |
Capillary number | Ca | [math]\displaystyle{ \mathrm{Ca} = \frac{\mu V}{\gamma} }[/math] | porous media, fluid mechanics (viscous forces versus surface tension) |
Chandrasekhar number | Q | [math]\displaystyle{ \mathrm{Q} = \frac{{B_0}^2 d^2}{\mu_0 \rho \nu \lambda} }[/math] | magnetohydrodynamics (ratio of the Lorentz force to the viscosity in magnetic convection) |
Colburn J factors | JM, JH, JD | turbulence; heat, mass, and momentum transfer (dimensionless transfer coefficients) | |
Darcy friction factor | Cf or fD | fluid mechanics (fraction of pressure losses due to friction in a pipe; four times the Fanning friction factor) | |
Dean number | D | [math]\displaystyle{ \mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2} }[/math] | turbulent flow (vortices in curved ducts) |
Deborah number | De | [math]\displaystyle{ \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}} }[/math] | rheology (viscoelastic fluids) |
Drag coefficient | cd | [math]\displaystyle{ c_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, , }[/math] | aeronautics, fluid dynamics (resistance to fluid motion) |
Eckert number | Ec | [math]\displaystyle{ \mathrm{Ec} = \frac{V^2}{c_p\Delta T} }[/math] | convective heat transfer (characterizes dissipation of energy; ratio of kinetic energy to enthalpy) |
Ekman number | Ek | [math]\displaystyle{ \mathrm{Ek} = \frac{\nu}{2D^2\Omega\sin\varphi} }[/math] | geophysics (viscous versus Coriolis forces) |
Eötvös number | Eo | [math]\displaystyle{ \mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma} }[/math] | fluid mechanics (shape of bubbles or drops) |
Ericksen number | Er | [math]\displaystyle{ \mathrm{Er}=\frac{\mu v L}{K} }[/math] | fluid dynamics (liquid crystal flow behavior; viscous over elastic forces) |
Euler number | Eu | [math]\displaystyle{ \mathrm{Eu}=\frac{\Delta{}p}{\rho V^2} }[/math] | hydrodynamics (stream pressure versus inertia forces) |
Excess temperature coefficient | [math]\displaystyle{ \Theta_r }[/math] | [math]\displaystyle{ \Theta_r = \frac{c_p (T-T_e)}{U_e^2/2} }[/math] | heat transfer, fluid dynamics (change in internal energy versus kinetic energy)[12] |
Fanning friction factor | f | fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor)[13] | |
Fourier number | Fo | [math]\displaystyle{ \mathrm{Fo} = \frac{\alpha t}{L^2} }[/math] | heat transfer, mass transfer (ratio of diffusive rate versus storage rate) |
Froude number | Fr | [math]\displaystyle{ \mathrm{Fr} = \frac{v}{\sqrt{g\ell}} }[/math] | fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces) |
Galilei number | Ga | [math]\displaystyle{ \mathrm{Ga} = \frac{g\, L^3}{\nu^2} }[/math] | fluid mechanics (gravitational over viscous forces) |
Görtler number | G | [math]\displaystyle{ \mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2} }[/math] | fluid dynamics (boundary layer flow along a concave wall) |
Graetz number | Gz | [math]\displaystyle{ \mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr} }[/math] | heat transfer, fluid mechanics (laminar flow through a conduit; also used in mass transfer) |
Grashof number | Gr | [math]\displaystyle{ \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2} }[/math] | heat transfer, natural convection (ratio of the buoyancy to viscous force) |
Hagen number | Hg | [math]\displaystyle{ \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2} }[/math] | heat transfer (ratio of the buoyancy to viscous force in forced convection) |
Hydraulic gradient | i | [math]\displaystyle{ i = \frac{\mathrm{d}h}{\mathrm{d}l} = \frac{h_2 - h_1}{\mathrm{length}} }[/math] | fluid mechanics, groundwater flow (pressure head over distance) |
Karlovitz number | Ka | [math]\displaystyle{ \mathrm{Ka} = \frac{t_F}{t_\eta} }[/math] | turbulent combustion (characteristic chemical time scale to Kolmogorov time scale) |
Keulegan–Carpenter number | KC | [math]\displaystyle{ \mathrm{K_C} = \frac{V\,T}{L} }[/math] | fluid dynamics (ratio of drag force to inertia for a bluff object in oscillatory fluid flow) |
Knudsen number | Kn | [math]\displaystyle{ \mathrm{Kn} = \frac {\lambda}{L} }[/math] | gas dynamics (ratio of the molecular mean free path length to a representative physical length scale) |
Kutateladze number | Ku | [math]\displaystyle{ \mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}} }[/math] | fluid mechanics (counter-current two-phase flow)[14] |
Laplace number | La | [math]\displaystyle{ \mathrm{La} = \frac{\sigma \rho L}{\mu^2} }[/math] | fluid dynamics (free convection within immiscible fluids; ratio of surface tension to momentum-transport) |
Lewis number | Le | [math]\displaystyle{ \mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}} }[/math] | heat and mass transfer (ratio of thermal to mass diffusivity) |
Lift coefficient | CL | [math]\displaystyle{ C_\mathrm{L} = \frac{L}{q\,S} }[/math] | aerodynamics (lift available from an airfoil at a given angle of attack) |
Lockhart–Martinelli parameter | [math]\displaystyle{ \chi }[/math] | [math]\displaystyle{ \chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}} }[/math] | two-phase flow (flow of wet gases; liquid fraction)[15] |
Mach number | M or Ma | [math]\displaystyle{ \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}} }[/math] | gas dynamics (compressible flow; dimensionless velocity) |
Magnetic Reynolds number | Rm | [math]\displaystyle{ \mathrm{R}_\mathrm{m} = \frac{U L}{\eta} }[/math] | magnetohydrodynamics (ratio of magnetic advection to magnetic diffusion) |
Manning roughness coefficient | n | open channel flow (flow driven by gravity)[16] | |
Marangoni number | Mg | [math]\displaystyle{ \mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} }[/math] | fluid mechanics (Marangoni flow; thermal surface tension forces over viscous forces) |
Markstein number | [math]\displaystyle{ \mathcal{M} }[/math] | [math]\displaystyle{ \mathcal{M} = \frac{\mathcal{L}_b}{\delta_L} }[/math] | fluid dynamics, combustion (turbulent combustion flames) |
Morton number | Mo | [math]\displaystyle{ \mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3} }[/math] | fluid dynamics (determination of bubble/drop shape) |
Nusselt number | Nu | [math]\displaystyle{ \mathrm{Nu}_d =\frac{hd}{k} }[/math] | heat transfer (forced convection; ratio of convective to conductive heat transfer) |
Ohnesorge number | Oh | [math]\displaystyle{ \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}} }[/math] | fluid dynamics (atomization of liquids, Marangoni flow) |
Péclet number | Pe | [math]\displaystyle{ \mathrm{Pe}_d = \frac{du\rho c_p}{k} = \mathrm{Re}_d\, \mathrm{Pr} }[/math] | heat transfer (advection–diffusion problems; total momentum transfer to molecular heat transfer) |
Péclet number | Pe | [math]\displaystyle{ \mathrm{Pe}_d = \frac{du}{D} = \mathrm{Re}_d\, \mathrm{Sc} }[/math] | mass transfer (advection–diffusion problems; total momentum transfer to diffusive mass transfer) |
Prandtl number | Pr | [math]\displaystyle{ \mathrm{Pr} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k} }[/math] | heat transfer (ratio of viscous diffusion rate over thermal diffusion rate) |
Pressure coefficient | CP | [math]\displaystyle{ C_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2} }[/math] | aerodynamics, hydrodynamics (pressure experienced at a point on an airfoil; dimensionless pressure variable) |
Rayleigh number | Ra | [math]\displaystyle{ \mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3 }[/math] | heat transfer (buoyancy versus viscous forces in free convection) |
Reynolds number | Re | [math]\displaystyle{ \mathrm{Re}_L = \frac{vL\rho}{\mu} }[/math] | fluid mechanics (ratio of fluid inertial and viscous forces)[1] |
Richardson number | Ri | [math]\displaystyle{ \mathrm{Ri} = \frac{gh}{u^2} = \frac{1}{\mathrm{Fr}^2} }[/math] | fluid dynamics (effect of buoyancy on flow stability; ratio of potential over kinetic energy)[17] |
Roshko number | Ro | [math]\displaystyle{ \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re} }[/math] | fluid dynamics (oscillating flow, vortex shedding) |
Schmidt number | Sc | [math]\displaystyle{ \mathrm{Sc}_D = \frac{\nu}{D} }[/math] | mass transfer (viscous over molecular diffusion rate)[18] |
Shape factor | H | [math]\displaystyle{ H = \frac {\delta^*}{\theta} }[/math] | boundary layer flow (ratio of displacement thickness to momentum thickness) |
Sherwood number | Sh | [math]\displaystyle{ \mathrm{Sh}_D = \frac{K L}{D} }[/math] | mass transfer (forced convection; ratio of convective to diffusive mass transport) |
Sommerfeld number | S | [math]\displaystyle{ \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P} }[/math] | hydrodynamic lubrication (boundary lubrication)[19] |
Stanton number | St | [math]\displaystyle{ \mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}} }[/math] | heat transfer and fluid dynamics (forced convection) |
Stokes number | Stk or Sk | [math]\displaystyle{ \mathrm{Stk} = \frac{\tau U_o}{d_c} }[/math] | particles suspensions (ratio of characteristic time of particle to time of flow) |
Strouhal number | St or Sr | [math]\displaystyle{ \mathrm{St} = {\omega L\over v} }[/math] | fluid dynamics (continuous and pulsating flow; nondimensional frequency)[20] |
Stuart number | N | [math]\displaystyle{ \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}} }[/math] | magnetohydrodynamics (ratio of electromagnetic to inertial forces) |
Taylor number | Ta | [math]\displaystyle{ \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2} }[/math] | fluid dynamics (rotating fluid flows; inertial forces due to rotation of a fluid versus viscous forces) |
Ursell number | U | [math]\displaystyle{ \mathrm{U} = \frac{H\, \lambda^2}{h^3} }[/math] | wave mechanics (nonlinearity of surface gravity waves on a shallow fluid layer) |
Vadasz number | Va | [math]\displaystyle{ \mathrm{Va} = \frac{\phi\, \mathrm{Pr}}{\mathrm{Da}} }[/math] | porous media (governs the effects of porosity [math]\displaystyle{ \phi }[/math], the Prandtl number and the Darcy number on flow in a porous medium) [21] |
Wallis parameter | j* | [math]\displaystyle{ j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2} }[/math] | multiphase flows (nondimensional superficial velocity)[22] |
Weber number | We | [math]\displaystyle{ \mathrm{We} = \frac{\rho v^2 l}{\sigma} }[/math] | multiphase flow (strongly curved surfaces; ratio of inertia to surface tension) |
Weissenberg number | Wi | [math]\displaystyle{ \mathrm{Wi} = \dot{\gamma} \lambda }[/math] | viscoelastic flows (shear rate times the relaxation time)[23] |
Womersley number | [math]\displaystyle{ \alpha }[/math] | [math]\displaystyle{ \alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2} }[/math] | biofluid mechanics (continuous and pulsating flows; ratio of pulsatile flow frequency to viscous effects)[24] |
Zel'dovich number | [math]\displaystyle{ \beta }[/math] | [math]\displaystyle{ \beta = \frac{E}{RT_f} \frac{T_f-T_o}{T_f} }[/math] | fluid dynamics, Combustion (Measure of activation energy) |
Solids
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Coefficient of kinetic friction | [math]\displaystyle{ \mu_k }[/math] | mechanics (friction of solid bodies in translational motion) | |
Coefficient of static friction | [math]\displaystyle{ \mu_s }[/math] | mechanics (friction of solid bodies at rest) | |
Dieterich-Ruina-Rice number | [math]\displaystyle{ \mathrm{R_u} }[/math] | [math]\displaystyle{ \mathrm{R_u} = \frac{W}{L}\frac{(b-a)\bar{\sigma}}{G} }[/math] | mechanics, friction, rheology, geophysics (stiffness ratio for frictional contacts)[25] |
Föppl–von Kármán number | [math]\displaystyle{ \gamma }[/math] | [math]\displaystyle{ \gamma = \frac{Y r^2}{\kappa} }[/math] | virology, solid mechanics (thin-shell buckling) |
Rockwell scale | – | mechanical hardness (indentation hardness of a material) | |
Rolling resistance coefficient | Crr | [math]\displaystyle{ C_{rr} = \frac{F}{N_f} }[/math] | vehicle dynamics (ratio of force needed for motion of a wheel over the normal force) |
Optics
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Abbe number | V | [math]\displaystyle{ V = \frac{ n_d - 1 }{ n_F - n_C } }[/math] | optics (dispersion in optical materials) |
f-number | N | [math]\displaystyle{ N = \frac{f}{D} }[/math] | optics, photography (ratio of focal length to diameter of aperture) |
Fresnel number | F | [math]\displaystyle{ \mathit{F} = \frac{a^{2}}{L \lambda} }[/math] | optics (slit diffraction)[26] |
Refractive index | n | [math]\displaystyle{ n=\frac{c}{v} }[/math] | electromagnetism, optics (speed of light in vacuum over speed of light in a material) |
Transmittance | T | [math]\displaystyle{ T = \frac{I}{I_0} }[/math] | optics, spectroscopy (the ratio of the intensities of radiation exiting through and incident on a sample) |
Mathematics and statistics
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Coefficient of determination | [math]\displaystyle{ R^2 }[/math] | statistics (proportion of variance explained by a statistical model) | |
Coefficient of variation | [math]\displaystyle{ \frac{\sigma}{\mu} }[/math] | [math]\displaystyle{ \frac{\sigma}{\mu} }[/math] | statistics (ratio of standard deviation to expectation) |
Correlation | ρ or r | [math]\displaystyle{ \frac{\operatorname{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y} }[/math] | statistics (measure of linear dependence) |
Courant–Friedrich–Levy number | C or 𝜈 | [math]\displaystyle{ C = \frac {u\,\Delta t} {\Delta x} }[/math] | mathematics (numerical solutions of hyperbolic PDEs)[27] |
Euler's number | e | [math]\displaystyle{ e = \displaystyle\sum\limits_{n = 0}^{ \infty} \dfrac{1}{n!} \approx 2.71828 }[/math] | mathematics (base of the natural logarithm) |
Feigenbaum constants | [math]\displaystyle{ \alpha }[/math], [math]\displaystyle{ \delta }[/math] | [math]\displaystyle{ \alpha \approx 2.50290, }[/math] [math]\displaystyle{ \ \delta \approx 4.66920 }[/math] |
chaos theory (period doubling)[28] |
Golden ratio | [math]\displaystyle{ \varphi }[/math] | [math]\displaystyle{ \varphi = \frac{1+\sqrt{5}}{2} \approx 1.61803 }[/math] | mathematics, aesthetics (long side length of self-similar rectangle) |
Pi | [math]\displaystyle{ \pi }[/math] | [math]\displaystyle{ \pi = \frac{C}{D} \approx 3.14159 }[/math] | mathematics (ratio of a circle's circumference to its diameter) |
Radian measure | rad | [math]\displaystyle{ \text{arc length}/\text{radius} }[/math] | mathematics (measurement of planar angles, 1 radian = 180/π degrees) |
Steradian measure | sr | measurement of solid angles |
Geography, geology and geophysics
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Albedo | [math]\displaystyle{ \alpha }[/math] | [math]\displaystyle{ \alpha= (1-D) \bar \alpha(\theta_i) + D \bar{ \bar \alpha} }[/math] | climatology, astronomy (reflectivity of surfaces or bodies) |
Love numbers | h, k, l | geophysics (solidity of earth and other planets) | |
Porosity | [math]\displaystyle{ \phi }[/math] | [math]\displaystyle{ \phi = \frac{V_\mathrm{V}}{V_\mathrm{T}} }[/math] | geology, porous media (void fraction of the medium) |
Rossby number | Ro | [math]\displaystyle{ \mathrm{Ro}=\frac{U}{Lf} }[/math] | geophysics (ratio of inertial to Coriolis force) |
Sport
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Blondeau number | [math]\displaystyle{ B_\kappa }[/math] | [math]\displaystyle{ \mathrm{B_\kappa} = \frac{t_g v_f}{l_{mf}} }[/math] | sport science, team sports[29] |
Gain ratio | – | bicycling (system of representing gearing; length traveled over length pedaled)[30] | |
Goal average | – | [math]\displaystyle{ \text{Goal average }=\frac{\text{goals scored}}{\text{goals conceded}} }[/math] | Association football[31] |
Runs Per Wicket Ratio | RpW ratio | [math]\displaystyle{ \text{RpW ratio }=\frac{\text{runs scored}}{\text{wickets lost}} \div \frac{\text{runs conceded}}{\text{wickets taken}} }[/math] | cricket[32] |
Winning percentage | – | Various, e.g. [math]\displaystyle{ \frac{\text{Games won}}{\text{Games played}} }[/math] or [math]\displaystyle{ \frac{\text{Points won}}{\text{Points contested}} }[/math] | Various sports |
Other fields
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Capacity factor | [math]\displaystyle{ \frac{\text{actual electrical energy output}}{\text{maximum possible electrical energy output}} }[/math] | energy | |
Cohesion number | Coh | [math]\displaystyle{ Coh=\frac{1}{\rho g}\left ( \frac{\Gamma^5}{{E^*}^2{R^*}^8} \right )^{\frac{1}{3}} }[/math] | Chemical engineering, material science, mechanics (A scale to show the energy needed for detaching two solid particles)[33][34] |
Cost of transport | COT | [math]\displaystyle{ \mathrm{COT} = \frac{E}{mgd} }[/math] | energy efficiency, economics (ratio of energy input to kinetic motion) |
Damping ratio | [math]\displaystyle{ \zeta }[/math] | [math]\displaystyle{ \zeta = \frac{c}{2 \sqrt{km}} }[/math] | mechanics, electrical engineering (the level of damping in a system) |
Darcy number | Da | [math]\displaystyle{ \mathrm{Da} = \frac{K}{d^2} }[/math] | porous media (ratio of permeability to cross-sectional area) |
Decibel | dB | acoustics, electronics, control theory (ratio of two intensities or powers of a wave) | |
Dukhin number | Du | [math]\displaystyle{ \mathrm{Du} = \frac{\kappa^{\sigma}}{{\Kappa_m} a} }[/math] | colloid science (ratio of electric surface conductivity to the electric bulk conductivity in heterogeneous systems) |
Elasticity (economics) |
E | [math]\displaystyle{ E_{x,y} = \frac{\partial \ln(x)}{\partial \ln(y)} = \frac{\partial x}{\partial y}\frac{y}{x} }[/math] | economics (response of demand or supply to price changes) |
Fine-structure constant | [math]\displaystyle{ \alpha }[/math] | [math]\displaystyle{ \alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} }[/math] | quantum electrodynamics (QED) (coupling constant characterizing the strength of the electromagnetic interaction) |
Gain | – | electronics (signal output to signal input) | |
Havnes parameter | [math]\displaystyle{ P_H }[/math] | [math]\displaystyle{ P_H = \frac{Z_d n_d}{n_i} }[/math] | In Dusty plasma physics, ratio of the total charge [math]\displaystyle{ Z_d }[/math] carried by the dust particles [math]\displaystyle{ d }[/math] to the charge carried by the ions [math]\displaystyle{ i }[/math], with [math]\displaystyle{ n }[/math] the number density of particles |
Helmholtz number | [math]\displaystyle{ He }[/math] | [math]\displaystyle{ He = \frac{wa}{c_0} = k_0a }[/math] | The most important parameter in duct acoustics. If [math]\displaystyle{ \omega }[/math] is the dimensional frequency, then [math]\displaystyle{ k_0 }[/math] is the corresponding free field wavenumber and [math]\displaystyle{ He }[/math] is the corresponding dimensionless frequency [35] |
Iribarren number | Ir | [math]\displaystyle{ \mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}} }[/math] | wave mechanics (breaking surface gravity waves on a slope) |
Load factor | [math]\displaystyle{ \frac{\text{average load}}{\text{peak load}} }[/math] | energy | |
Lundquist number | S | [math]\displaystyle{ S = \frac{\mu_0LV_A}{\eta} }[/math] | plasma physics (ratio of a resistive time to an Alfvén wave crossing time in a plasma) |
Peel number | NP | [math]\displaystyle{ N_\mathrm{P} = \frac{\text{Restoring force}}{\text{Adhesive force}} }[/math] | coating (adhesion of microstructures with substrate)[36] |
Perveance | K | [math]\displaystyle{ {K} = \frac{{I}}{{I_0}}\,\frac{{2}}{{\beta}^3{\gamma}^3} (1-\gamma^2f_e) }[/math] | charged particle transport (measure of the strength of space charge in a charged particle beam) |
Pierce parameter | [math]\displaystyle{ C }[/math] | [math]\displaystyle{ C^3=\frac{Z_c I_K}{4 V_K} }[/math] | Traveling wave tube |
Pixel | px | digital imaging (smallest addressable unit) | |
Beta (plasma physics) | [math]\displaystyle{ \beta }[/math] | [math]\displaystyle{ \beta = \frac{n k_B T}{B^2/2\mu_0} }[/math] | Plasma and Fusion power. Ratio of plasma thermal pressure to magnetic pressure, controlling the level of turbulence in a magnetised plasma. |
Poisson's ratio | [math]\displaystyle{ \nu }[/math] | [math]\displaystyle{ \nu = -\frac{\mathrm{d}\varepsilon_\mathrm{trans}}{\mathrm{d}\varepsilon_\mathrm{axial}} }[/math] | elasticity (strain in transverse and longitudinal direction) |
Power factor | pf | [math]\displaystyle{ pf = \frac{P}{S} }[/math] | electrical (real power to apparent power) |
Power number | Np | [math]\displaystyle{ N_p = {P\over \rho n^3 d^5} }[/math] | fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force) |
Prater number | β | [math]\displaystyle{ \beta = \frac{-\Delta H_r D_{TA}^e C_{AS}}{\lambda^e T_s} }[/math] | reaction engineering (ratio of heat evolution to heat conduction within a catalyst pellet)[37] |
Q factor | Q | [math]\displaystyle{ Q = 2 \pi f_r \frac{\text{Energy Stored}}{\text{Power Loss}} }[/math] | physics, engineering (Damping ratio of oscillator or resonator; energy stored versus energy lost) |
Relative density | RD | [math]\displaystyle{ RD = \frac{\rho_\mathrm{substance}}{\rho_\mathrm{reference}} }[/math] | hydrometers, material comparisons (ratio of density of a material to a reference material—usually water) |
Relative permeability | [math]\displaystyle{ \mu_r }[/math] | [math]\displaystyle{ \mu_r = \frac{\mu}{\mu_0} }[/math] | magnetostatics (ratio of the permeability of a specific medium to free space) |
Relative permittivity | [math]\displaystyle{ \varepsilon_r }[/math] | [math]\displaystyle{ \varepsilon_{r} = \frac{C_{x}} {C_{0}} }[/math] | electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) |
Rouse number | P or Z | [math]\displaystyle{ \mathrm{P} = \frac{w_s}{\kappa u_*} }[/math] | sediment transport (ratio of the sediment fall velocity and the upwards velocity of grain) |
Shields parameter | [math]\displaystyle{ \tau_* }[/math] or [math]\displaystyle{ \theta }[/math] | [math]\displaystyle{ \tau_{\ast} = \frac{\tau}{(\rho_s - \rho) g D} }[/math] | sediment transport (threshold of sediment movement due to fluid motion; dimensionless shear stress) |
Specific gravity | SG | (same as Relative density) | |
Stefan number | Ste | [math]\displaystyle{ \mathrm{Ste} = \frac{c_p \Delta T}{L} }[/math] | phase change, thermodynamics (ratio of sensible heat to latent heat) |
Strain | [math]\displaystyle{ \epsilon }[/math] | [math]\displaystyle{ \epsilon = \cfrac{\partial{F}}{\partial{X}} - 1 }[/math] | materials science, elasticity (displacement between particles in the body relative to a reference length) |
References
- ↑ 1.0 1.1 1.2 "Table of Dimensionless Numbers". http://www.cchem.berkeley.edu/gsac/grad_info/prelims/binders/dimensionless_numbers.pdf.
- ↑ Becker, A.; Hüttinger, K. J. (1998). "Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime". Carbon 36 (3): 177. doi:10.1016/S0008-6223(97)00175-9.
- ↑ Incropera, Frank P. (2007). Fundamentals of heat and mass transfer. John Wiley & Sons, Inc. p. 376. ISBN 9780470055540. https://archive.org/details/fundamentalsheat00incr_869.
- ↑ Popov, Konstantin I.; Djokić, Stojan S.; Grgur, Branimir N. (2002). Fundamental Aspects of Electrometallurgy. Boston, MA: Springer. pp. 101–102. ISBN 978-0-306-47564-1.
- ↑ Kuneš, J. (2012). "Technology and Mechanical Engineering". Dimensionless Physical Quantities in Science and Engineering. pp. 353–390. doi:10.1016/B978-0-12-416013-2.00008-7. ISBN 978-0-12-416013-2.
- ↑ Asakuma, Y. (2020). "A dimensionless number for microwave non-equilibrium local heating through surfactant desorption". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 591. pp. 124560.
- ↑ Bagnold number
- ↑ Bhattacharjee S.; Grosshandler W.L. (1988). "The formation of wall jet near a high temperature wall under microgravity environment". ASME MTD 96: 711–6. Bibcode: 1988nht.....1..711B.
- ↑ Paoletti S.; Rispoli F.; Sciubba E. (1989). "Calculation of exergetic losses in compact heat exchanger passager". ASME AES 10 (2): 21–9.
- ↑ Bond number
- ↑ "Home". OnePetro. 2015-05-04. http://www.onepetro.org/mslib/servlet/onepetropreview?id=00020506.
- ↑ Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.. pp. 132–134. ISBN 0-13-086885-X. https://archive.org/details/boundarylayerana00sche.
- ↑ "Fanning friction factor". http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm.
- ↑ Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science 56 (21–22): 6337. doi:10.1016/S0009-2509(01)00247-0. Bibcode: 2001ChEnS..56.6337T.
- ↑ Lockhart–Martinelli parameter
- ↑ "Manning coefficient". 10 June 2013. http://www.epa.gov/ORD/NRMRL/pubs/600r01043/600R01043chap2.pdf. (109 KB)
- ↑ Richardson number
- ↑ Schmidt number
- ↑ Sommerfeld number
- ↑ Strouhal number, Engineering Toolbox
- ↑ Straughan, B. (2001). "A sharp nonlinear stability threshold in rotating porous convection". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 457 (2005): 87–88. doi:10.1098/rspa.2000.0657. Bibcode: 2001RSPSA.457...87S.
- ↑ Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design 188: 75–84. doi:10.1016/S0029-5493(99)00005-9.
- ↑ Weissenberg number
- ↑ Womersley number
- ↑ Barbot, S. (2019). "Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault". Tectonophysics 768: 228171. doi:10.1016/j.tecto.2019.228171. Bibcode: 2019Tectp.76828171B.
- ↑ Fresnel number
- ↑ Courant–Friedrich–Levy number
- ↑ Feigenbaum constants
- ↑ Blondeau, J. (2021). "The influence of field size, goal size and number of players on the average number of goals scored per game in variants of football and hockey: the Pi-theorem applied to team sports". Journal of Quantitative Analysis in Sports 17 (2): 145–154. doi:10.1515/jqas-2020-0009. https://doi.org/10.1515/jqas-2020-0009.
- ↑ Gain Ratio – Sheldon Brown
- ↑ "goal average". https://dictionary.cambridge.org/dictionary/english/goal-average.
- ↑ "World Test Championship Playing Conditions: What's different?". https://icc-static-files.s3.amazonaws.com/ICC/document/2019/07/31/6b4241d8-1b33-44b5-8a83-579380989fb9/Changes-to-Test-PCs-for-WTC.pdf.
- ↑ Behjani, Mohammadreza Alizadeh; Rahmanian, Nejat; Ghani, Nur Fardina bt Abdul; Hassanpour, Ali (2017). "An investigation on process of seeded granulation in a continuous drum granulator using DEM". Advanced Powder Technology 28 (10): 2456–2464. doi:10.1016/j.apt.2017.02.011. http://eprints.whiterose.ac.uk/113300/3/APT_Seeded_Granulation-accepted%20manuscript%20Feb%202017.pdf.
- ↑ Alizadeh Behjani, Mohammadreza; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew (2017). "Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures" (in en). EPJ Web of Conferences 140: 06024. doi:10.1051/epjconf/201714006024. ISSN 2100-014X. Bibcode: 2017EPJWC.14006024A.
- ↑ S.W. RIENSTRA, 2015, Fundamentals of Duct Acoustics, Von Karman Institute Lecture Notes
- ↑ Van Spengen, W. M.; Puers, R.; De Wolf, I. (2003). "The prediction of stiction failures in MEMS". IEEE Transactions on Device and Materials Reliability 3 (4): 167. doi:10.1109/TDMR.2003.820295.
- ↑ Davis, Mark E.; Davis, Robert J. (2012). Fundamentals of Chemical Reaction Engineering. Dover. p. 215. ISBN 978-0-486-48855-4.