7-simplex

From HandWiki
Revision as of 18:10, 6 February 2024 by Ohm (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Regular octaexon
(7-simplex)
7-simplex t0.svg
Orthogonal projection
inside Petrie polygon
Type Regular 7-polytope
Family simplex
Schläfli symbol {3,3,3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces 8 6-simplex6-simplex t0.svg
5-faces 28 5-simplex5-simplex t0.svg
4-faces 56 5-cell4-simplex t0.svg
Cells 70 tetrahedron3-simplex t0.svg
Faces 56 triangle2-simplex t0.svg
Edges 28
Vertices 8
Vertex figure 6-simplex
Petrie polygon octagon
Coxeter group A7 [3,3,3,3,3,3]
Dual Self-dual
Properties convex

In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°.

Alternate names

It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions. The name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca.[1]

As a configuration

This configuration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]

[math]\displaystyle{ \begin{bmatrix}\begin{matrix}8 & 7 & 21 & 35 & 35 & 21 & 7 \\ 2 & 28 & 6 & 15 & 20 & 15 & 6 \\ 3 & 3 & 56 & 5 & 10 & 10 & 5 \\ 4 & 6 & 4 & 70 & 4 & 6 & 4 \\ 5 & 10 & 10 & 5 & 56 & 3 & 3 \\ 6 & 15 & 20 & 15 & 6 & 28 & 2 \\ 7 & 21 & 35 & 35 & 21 & 7 & 8 \end{matrix}\end{bmatrix} }[/math]

Symmetry

Tetrahedral di-wedge.png
7-simplex as a join of two orthogonal tetrahedra in a symmetric 2D orthographic project: 2⋅{3,3} or {3,3}∨{3,3}, 6 red edges, 6 blue edges, and 16 yellow cross edges.
7-simplex-tetradisphenoid.png
7-simplex as a join of 4 orthogonal segments, projected into a 3D cube: 4⋅{ } = { }∨{ }∨{ }∨{ }. The 28 edges are shown as 12 yellow edges of the cube, 12 cube face diagonals in light green, and 4 full diagonals in red. This partition can be considered a tetradisphenoid, or a join of two disphenoid.

There are many lower symmetry constructions of the 7-simplex.

Some are expressed as join partitions of two or more lower simplexes. The symmetry order of each join is the product of the symmetry order of the elements, and raised further if identical elements can be interchanged.

Join Symbol Symmetry Order Extended f-vectors
(factorization)
Regular 7-simplex {3,3,3,3,3,3} [3,3,3,3,3,3] 8! = 40320 (1,8,28,56,70,56,28,8,1)
6-simplex-point join (pyramid) {3,3,3,3,3}∨( ) [3,3,3,3,3,1] 7!×1! = 5040 (1,7,21,35,35,21,7,1)*(1,1)
5-simplex-segment join {3,3,3,3}∨{ } [3,3,3,3,2,1] 6!×2! = 1440 (1,6,15,20,15,6,1)*(1,2,1)
5-cell-triangle join {3,3,3}∨{3} [3,3,3,2,3,1] 5!×3! = 720 (1,5,10,10,5,1)*(1,3,3,1)
triangle-triangle-segment join {3}∨{3}∨{ } [[3,2,3],2,1,1] ((3!)2×2!)×2! = 144 (1,3,3,1)2*(1,2,1)
Tetrahedron-tetrahedron join 2⋅{3,3} = {3,3}∨{3,3} [[3,3,2,3,3],1] (4!)2×2! = 1052 (1,4,6,4,1)2
4 segment join 4⋅{ } = { }∨{ }∨{ }∨{ } [4[2,2,2],1,1,1] (2!)4×4! = 384 (1,2,1)4
8 point join 8⋅( ) [8[1,1,1,1,1,1]] (1!)8×8! = 40320 (1,1)8

Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are:

[math]\displaystyle{ \left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right) }[/math]
[math]\displaystyle{ \left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right) }[/math]
[math]\displaystyle{ \left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right) }[/math]
[math]\displaystyle{ \left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right) }[/math]
[math]\displaystyle{ \left(\sqrt{1/28},\ \sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right) }[/math]
[math]\displaystyle{ \left(\sqrt{1/28},\ -\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right) }[/math]
[math]\displaystyle{ \left(-\sqrt{7/4},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right) }[/math]

More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of (0,0,0,0,0,0,0,1). This construction is based on facets of the 8-orthoplex.

Images

7-Simplex in 3D
Uniform polytope 3,3,3,3,3,3 t0.jpg
Ball and stick model in triakis tetrahedral envelope
Amplituhedron-0c.png
7-Simplex as an Amplituhedron Surface
Amplituhedron-0b.png
7-simplex to 3D with camera perspective showing hints of its 2D Petrie projection

Orthographic projections

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0.svg 7-simplex t0 A6.svg 7-simplex t0 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0 A4.svg 7-simplex t0 A3.svg 7-simplex t0 A2.svg
Dihedral symmetry [5] [4] [3]

Related polytopes

This polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

Notes

  1. Klitzing, Richard. "7D uniform polytopes (polyexa) x3o3o3o3o3o3o — oca". https://bendwavy.org/klitzing/dimensions/polyexa.htm. 
  2. Coxeter, H.S.M. (1973). "§1.8 Configurations". Regular Polytopes (3rd ed.). Dover. ISBN 0-486-61480-8. 
  3. Coxeter, H.S.M. (1991). Regular Complex Polytopes (2nd ed.). Cambridge University Press. pp. 117. ISBN 9780521394901. https://books.google.com/books?id=9BY9AAAAIAAJ&pg=PA117. 

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds