Astronomy:List of the most distant astronomical objects

From HandWiki
Color composite JWST NIRCam image of distant galaxy JADES-GS-z13-0. An initial sample of four z>10 galaxies was spectroscopically confirmed by Curtis-Lake et al. at redshifts z~10.4-13.2. The most distant galaxies at z=13.20 and z=12.63 are newly discovered by JADES NIRCam imaging, while the z=10.38 and z=11.58 galaxies confirm previous photometric redshift estimates from the literature. The yellow-orange-red colours reflect the absorption of the F115W and F150W fluxes of these distant galaxies by the intervening intergalactic medium.
JADES-GS-z13-0 is a distant galaxy.
Short description: none

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

For comparisons with the light travel distance of the astronomical objects listed below, the age of the universe since the Big Bang is currently estimated as 13.787±0.020 Gyr.[1]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

The proper distance provides a measurement of how far a galaxy is at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one: [math]\displaystyle{ a(t_0) = 1 }[/math]. The proper distance represents the distance obtained as if one were able to freeze the flow of time (set [math]\displaystyle{ dt = 0 }[/math] in the FLRW metric) and walk all the way to a galaxy while using a meter stick.[2] For practical reasons, the proper distance is calculated as the distance traveled by light (set [math]\displaystyle{ ds = 0 }[/math] in the FLRW metric) from the time of emission by a galaxy to the time an observer (on Earth) receives the light signal. It differs from the “light travel distance” since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c.[3]   

Most distant spectroscopically-confirmed objects

Most distant astronomical objects with spectroscopic redshift determinations
Image Name Redshift
(z)
Light travel distance§
(Gly)[4][5][6][7]
Proper distance

(Gly)

Type Notes
JADES-GS-z13-0.png JADES-GS-z13-0 z = 13.20+0.04
−0.07
13.576[4] / 13.596[5] / 13.474[6] / 13.473[7] 33.6 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[8] Possibly a dark star.[9]
UNCOVER-z13 z = 13.079+0.014
−0.001
13.51 32.56 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[10]
JADES-GS-z12-0 z = 12.63+0.24
−0.08
13.556[4] / 13.576[5] / 13.454[6] / 13.453[7] 32.34 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[8] Possibly a dark star.[9]
UNCOVER-z12 z = 12.393+0.004
−0.001
13.48 32.21 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[10]
NASA-GLASS-z13-Context-JWST-20220722.jpg GLASS-z12 z = 12.117+0.01
−0.01
13.536[4] / 13.556[5] / 13.434[6] / 13.433[7] 33.2 Galaxy Lyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission[11]
UDFj-39546284-hs-2011-05-c.jpg UDFj-39546284 z = 11.58+0.05
−0.05
13.512[4] / 13.532[5] / 13.410[6] / 13.409[7] 31.77 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[8] Possibly a dark star.[9]
CEERS J141946.36+525632.8
(Maisie's Galaxy)

[12]

z = 11.44+0.09
−0.08
13.4 31.69 Galaxy Lyman-break galaxy discovered by JWST
CEERS2 588

[13]

z = 11.04 13.45 31.45 Galaxy Lyman-break galaxy discovered by JWST
Distant galaxy GN-z11 in GOODS-N image by HST.jpg GN-z11 z = 10.6034 ± 0.0013 13.481[4] / 13.501[5] / 13.380[6] / 13.379[7] 31.18 Galaxy Lyman-break galaxy; detection of the Lyman break with HST at 5.5σ[14] and carbon emission lines with Keck/MOSFIRE at 5.3σ.[15] Conclusive redshift by JWST in February 2023[16]
JADES-GS-z10-0 UDFj-39546284 z = 10.38+0.07
−0.06
13.449[4] / 13.469[5] / 13.348[6] / 13.347[7] 31.04 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[8]
JD1-JWST-GLASS.pdf JD1 z = 9.793±0.002 13.409[4] / 13.429[5] / 13.308[6] / 13.307[7] 30.12 Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[17]
Hubble and ALMA image of MACS J1149.5+2223.jpg MACS1149-JD1 z = 9.1096±0.0006 13.361[4] / 13.381[5] / 13.261[6] / 13.260[7] 30.37 Galaxy Detection of hydrogen emission line with the VLT, and oxygen line with ALMA[18]
EGSY8p7 por el Hubble y Spitzer.jpg EGSY8p7 z = 8.683+0.001
−0.004
13.325[4] / 13.345[5] / 13.225[6] / 13.224[7] 30.05 Galaxy Lyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence[19]
SMACS-4590 z = 8.496 13.308[4] / 13.328[5] / 13.208[6] / 13.207[7] 29.71 Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[20][21][22][23]
A2744 YD4 z = 8.38 13.297[4] / 13.317[5] / 13.197[6] / 13.196[7] 29.50 Galaxy Lyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence[24]
MACS0416 Y1 z = 8.3118±0.0003 13.290[4] / 13.310[5] / 13.190[6] / 13.189[7] 29.44 Galaxy [O III] emission detected with ALMA at 6.3σ confidence[25]
GRB 090423 z = 8.23+0.06
−0.07
13.282[4] / 13.302[5] / 13.182[6] / 13.181[7] 30 Gamma-ray burst Lyman-alpha break detected[26]
RXJ2129-11002 z = 8.16±0.01 13.175[4] 29.31 Galaxy [O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism[27]
RXJ2129-11022 z = 8.15±0.01 13.174[4] 29.30 Galaxy [O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism[27]
Galaxy-EGS-zs8-1-20150505.jpg EGS-zs8-1 z = 7.7302±0.0006 13.228[4] / 13.248[5] / 13.129[6] / 13.128[7] 29.5 Galaxy Lyman-break galaxy[28]
SMACS-6355 z = 7.665 13.221[4] / 13.241[5] / 13.121[6] / 13.120[7] 28.83 Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[20][21][22][23]
z7_GSD_3811 z = 7.6637±0.0011 13.221[4] / 13.240[5] / 13.121[6] / 13.120[7] 28.83 Galaxy Lyman-alpha emitter[29]
SMACS-10612 z = 7.658 13.221[4] / 13.241[5] / 13.120[6] / 13.119[7] 28.83 Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[20][21][22]>[23]
QSO J0313–1806 z = 7.6423±0.0013 13.218[4] / 13.238[5] / 13.119[6] / 13.118[7] 30 Quasar
ULAS J1342+0928 z = 7.5413±0.0007 13.206[4] / 13.226[5] / 13.107[6] / 13.106[7] 29.36 Quasar Redshift estimated from [C II] emission[30]
Z8 GND 5296.jpg z8 GND 5296 z = 7.51 13.202[4] / 13.222[5] / 13.103[6] / 13.102[7] 30.01 Galaxy Lyman-alpha emitter[31]
A1689-zD1.jpg A1689-zD1 z = 7.5±0.2 13.201[4] / 13.221[5] / 13.102[6] / 13.101[7] 30 Galaxy
GS2_1406 z = 7.452±0.003 13.195[4] / 13.215[5] / 13.096[6] / 13.095[7] 28.62 Galaxy Lyman-alpha emitter[32]
GN-108036.jpg GN-108036 z = 7.213 13.164[4] / 13.184[5] / 13.065[6] / 13.064[7] 29 Galaxy Lyman alpha emitter[33]
SXDF-NB1006-2.jpeg SXDF-NB1006-2 z = 7.2120±0.0003 13.164[4] / 13.184[5] / 13.065[6] / 13.064[7] 29 Galaxy [O III] emission detected[34]
ALMA witnesses assembly of galaxy in early Universe (annotated).jpg BDF-3299 z = 7.109±0.002 13.149[4] / 13.169[5] / 13.051[6] / 13.050[7] 28.25 Galaxy Lyman-break galaxy[35]
ULAS J1120+0641.jpg ULAS J1120+0641 z = 7.085±0.003 13.146[4] / 13.166[5] / 13.048[6] / 13.047[7] 29.85 Quasar Redshift estimated from Si III]+C III] and Mg II emission lines[36]
A1703 zD6.jpg A1703 zD6 z = 7.045±0.004 13.140[4] / 13.160[5] / 13.042[6] / 13.041[7] 29 Galaxy Gravitationally-lensed Lyman-alpha emitter[37]
BDF-521 z = 7.008±0.002 13.135[4] / 13.155[5] / 13.037[6] / 13.036[7] 28.43 Galaxy Lyman-break galaxy[35]
G2_1408 z = 6.972±0.002 13.130[4] / 13.150[5] / 13.032[6] / 13.030[7] 28.10 Galaxy Lyman-alpha emitter[38]
IOK-1.jpg IOK-1 z = 6.965 13.129[4] / 13.149[5] / 13.030[6] / 13.029[7] 28.09 Galaxy Lyman-alpha emitter[33]
LAE J095950.99+021219.1.jpg LAE J095950.99+021219.1 z = 6.944 13.126[4] / 13.146[5] / 13.028[6] / 13.027[7] 28.07 Galaxy Lyman-alpha emitter[39]
SDF-46975 z = 6.844 13.111[4] / 13.131[5] / 13.013[6] / 13.012[7] 27.95 Galaxy Lyman-alpha emitter[33]
PSO J172.3556+18.7734 z = 6.823+0.003
−0.001
13.107[4] / 13.127[5] / 13.010[6] / 13.009[7] 27.93 Quasar
(astrophysical jet)
Redshift estimated from Mg II emission[40]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

† Numeric value obtained using Wright (2006)[5] with [math]\displaystyle{ H_{0} }[/math] = 70, [math]\displaystyle{ \Omega_{CM} }[/math] = 0.30, [math]\displaystyle{ \Omega_{DE} }[/math] = 0.70.

Candidate most distant objects

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared.[41][42] Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.[43] Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers.[44][45]

Notable candidates for most distant astronomical objects
Name Redshift
(z)
Light travel distance§
(Gly)
Type Notes
F200DB-045 zp = 20.4+0.3
−0.3
[42]
or 0.70+0.19
−0.55
[41] or 0.40+0.15
−0.26
[46]
13.725[4] / 13.745[5] / 13.623[6] / 13.621[7] Galaxy Lyman-break galaxy discovered by JWST[42]
NOTE: The redshift value of the galaxy presented by the procedure in one study[41] may differ from the values presented in other studies using different procedures.[42][47][46]
F200DB-175 zp = 16.2+0.3
−0.0
13.657[4] / 13.677[5] / 13.555[6] / 13.554[7] Galaxy Lyman-break galaxy discovered by JWST[42]
S5-z17-1 z = 16.0089±0.0004
or 4.6108±0.0001
13.653[4] / 13.673[5] / 13.551[6] / 13.550[7] Galaxy Lyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z = 4.6108±0.0001) or [O III] (z = 16.0089±0.0004).[44][45]
F150DB-041 zp = 16.0+0.2
−0.2
[42]
or 3.70+0.02
−0.59
[41]
13.653[4] / 13.673[5] / 13.551[6] / 13.549[7] Galaxy Lyman-break galaxy discovered by JWST[42][41]
SMACS-z16a zp = 15.92+0.17
−0.15
[48]
or 2.96+0.73
−0.21
[41]
13.651[4] / 13.671[5] / 13.549[6] / 13.548[7] Galaxy Lyman-break galaxy discovered by JWST[48][41]
F200DB-015 zp = 15.8+3.4
−0.1
13.648[4] / 13.668[5] / 13.546[6] / 13.545[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F200DB-181 zp = 15.8+0.5
−0.3
13.648[4] / 13.668[5] / 13.546[6] / 13.545[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F200DB-159 zp = 15.8+4.0
−15.2
13.648[4] / 13.668[5] / 13.546[6] / 13.545[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F200DB-086 zp = 15.4+0.6
−14.6
[42]
or 3.53+10.28
−1.84
[41]
13.639[4] / 13.659[5] / 13.537[6] / 13.536[7] Galaxy Lyman-break galaxy discovered by JWST[42][41]
SMACS-z16b zp = 15.32+0.16
−0.13
[48]
or 15.39+0.18
−0.26
[41]
13.637[4] / 13.657[5] / 13.535[6] / 13.534[7] Galaxy Lyman-break galaxy discovered by JWST[48][41]
F150DB-048 zp = 15.0+0.2
−0.8
13.629[4] / 13.649[5] / 13.527[6] / 13.526[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-007 zp = 14.6+0.4
−0.4
13.619[4] / 13.639[5] / 13.517[6] / 13.516[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-004 zp = 14.0+0.4
−2.0
13.602[4] / 13.622[5] / 13.500[6] / 13.499[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-079 zp = 13.8+0.5
−1.9
13.596[4] / 13.616[5] / 13.494[6] / 13.493[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-007 zp = 13.4+0.6
−2.0
13.583[4] / 13.603[5] / 13.481[6] / 13.480[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-053 zp = 13.4+0.3
−2.3
13.583[4] / 13.603[5] / 13.481[6] / 13.480[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-050 zp = 13.4+0.6
−10.0
13.583[4] / 13.603[5] / 13.481[6] / 13.480[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-058 zp = 13.4+0.6
−12.5
[42]
3.42+0.30
−0.20
[41]
13.583[4] / 13.603[5] / 13.481[6] / 13.480[7] Galaxy Lyman-break galaxy discovered by JWST[42][41]
F150DA-038 zp = 13.4+0.4
−13.2
13.583[4] / 13.603[5] / 13.481[6] / 13.480[7] Galaxy Lyman-break galaxy discovered by JWST[42]
HD1 z = 13.27 13.579[4] / 13.599[5] / 13.477[6] / 13.476[7] Galaxy Not yet spectroscopically confirmed. Guinness World Record of the most distant confirmed galaxy
Lyman-break galaxy (5σ confidence) followed with a tentative ALMA detection of a single [O III] oxygen emission line only (4σ confidence)[49]
F150DA-010 zp = 12.8+0.6
−1.5
13.562[4] / 13.582[5] / 13.460[6] / 13.459[7] Galaxy Lyman-break galaxy discovered by JWST[42]
S5-z12-1 zp = 12.57+1.23
−0.46
13.553[4] / 13.573[5] / 13.452[6] / 13.451[7] Galaxy Lyman-break galaxy discovered by JWST[44]
CEERS-27535 4 zp = 12.56+1.75
−0.27
13.553[4] / 13.573[5] / 13.452[6] / 13.451[7] Galaxy Lyman-break galaxy discovered by JWST[50]
SMACS-1566 zp = 12.29+1.50
−0.44
13.542[4] / 13.562[5] / 13.441[6] / 13.440[7] Galaxy Lyman-break galaxy discovered by JWST[50]
SMACS-z12b
(F150DA-077)
zp = 12.26+0.17
−0.16
[48][41]
or 13.4+0.4
−1.7
[42]
13.541[4] / 13.561[5] / 13.440[6] / 13.439[7] Galaxy Lyman-break galaxy discovered by JWST[48][41][42]
SMACS-z12a zp = 12.20+0.21
−0.12
13.539[4] / 13.559[5] / 13.437[6] / 13.436[7] Galaxy Lyman-break galaxy discovered by JWST[48][41]
CR2-z12-4 zp = 12.08+2.11
−1.25
13.534[4] / 13.554[5] / 13.432[6] / 13.431[7] Galaxy Lyman-break galaxy discovered by JWST[44]
SMACS-10566 zp = 12.03+0.57
−0.26
13.532[4] / 13.552[5] / 13.430[6] / 13.429[7] Galaxy Lyman-break galaxy discovered by JWST[50]
XDFH-2395446286 zp = 12.0+0.1
−0.2
13.530[4] / 13.550[5] / 13.429[6] / 13.428[7] Galaxy Lyman-break galaxy detected by JWST and Hubble[51]
CR2-z12-2 zp = 11.96+1.44
−0.87
13.529[4] / 13.549[5] / 13.427[6] / 13.426[7] Galaxy Lyman-break galaxy discovered by JWST[44]
9-BUSCAR zp = 11.91+0.10
−0.22
13.527[4] / 13.547[5] / 13.425[6] / 13.424[7] Galaxy
SMACS-8347 zp = 11.90+0.27
−0.39
13.526[4] / 13.546[5] / 13.425[6] / 13.424[7] Galaxy Lyman-break galaxy discovered by JWST[50]
CEERS-26409 4 zp = 11.90+1.60
−0.70
13.526[4] / 13.546[5] / 13.425[6] / 13.424[7] Galaxy Lyman-break galaxy discovered by JWST[50]
F150DB-069 zp = 11.8+1.7
−0.2
13.522[4] / 13.542[5] / 13.420[6] / 13.419[7] Galaxy Lyman-break galaxy discovered by JWST[42]
XDFH-2334046578 zp = 11.8+0.4
−0.5
13.522[4] / 13.542[5] / 13.420[6] / 13.419[7] Galaxy Lyman-break galaxy detected by JWST and Hubble[51]
CR2-z12-3 zp = 11.66+0.69
−0.71
13.515[4] / 13.535[5] / 13.414[6] / 13.413[7] Galaxy Lyman-break galaxy discovered by JWST[44]
CR2-z12-1 zp = 11.63+0.51
−0.53
13.514[4] / 13.534[5] / 13.413[6] / 13.412[7] Galaxy Lyman-break galaxy discovered by JWST[44]
F150DB-088 zp = 11.6+0.3
−0.2
13.513[4] / 13.533[5] / 13.411[6] / 13.410[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-084 zp = 11.6+0.4
−0.4
13.513[4] / 13.533[5] / 13.411[6] / 13.410[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-044 zp = 11.4+0.4
−11.3
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42]
XDFH-2404647339 zp = 11.4+0.4
−0.5
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy detected by JWST and Hubble[51]
F150DB-075 zp = 11.4+0.4
−0.1
[42]
0.04+0.01
−0.01
[41]
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42][41]
F150DA-062 zp = 11.4+0.3
−0.3
[42]
1.78+0.20
−0.08
[41]
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42][41]
CEERS-127682 zp = 11.40+0.59
−0.51
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[50]
CEERS-5268 2 zp = 11.40+0.30
−1.11
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[50]
F150DA-060 zp = 11.4+0.6
−8.2
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-031 zp = 11.4+1.0
−8.2
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-052 zp = 11.4+0.8
−10.6
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42]
F150DB-054 zp = 11.4+0.5
−10.8
13.503[4] / 13.523[5] / 13.402[6] / 13.401[7] Galaxy Lyman-break galaxy discovered by JWST[42]
SMACS-z11d zp = 11.28±0.32
or 2.35+0.30
−0.67
Galaxy Lyman-break galaxy discovered by JWST[41]
CEERS-77241 zp = 11.27+0.39
−0.70
Galaxy Lyman-break galaxy discovered by JWST[50]
CEERS-6647 zp = 11.27+0.58
−0.28
Galaxy Lyman-break galaxy discovered by JWST[50]
CEERS-622 4 zp = 11.27+0.48
−0.60
Galaxy Lyman-break galaxy discovered by JWST[50]
SMACS-z11c zp = 11.22±0.32
or 3.84+0.05
−0.04
Galaxy Lyman-break galaxy discovered by JWST[41]
SMACS-z11b zp = 11.22±0.56
or 6.94+0.07
−0.07
Galaxy Lyman-break galaxy discovered by JWST[41]
F150DA-005 zp = 11.2+0.4
−0.3
Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-020 zp = 11.2+0.2
−7.9
Galaxy Lyman-break galaxy discovered by JWST[42]
CEERS-61486 zp = 11.15+0.37
−0.35
Galaxy Lyman-break galaxy discovered by JWST[50]
SMACS-z11e
(F150DA-081)
zp = 11.10+0.21
−0.34
[41]
or 13.4+0.6
−2.2
[42]
Galaxy Lyman-break galaxy discovered by JWST[41][42]
SMACS-z11a zp = 11.05+0.09
−0.08
[48]
or 1.73+0.18
−0.04
[41]
Galaxy Lyman-break galaxy discovered by JWST[48][41]
CR3-z12-1 zp = 11.05+2.24
−0.47
Galaxy Lyman-break galaxy discovered by JWST[44]
F150DA-026 zp = 11.0+0.5
−0.3
Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-036 zp = 11.0+0.4
−7.8
Galaxy Lyman-break galaxy discovered by JWST[42]
SMACS-z10e zp = 10.89+0.16
−0.14
[48]
or 1.38+1.37
−0.24
[41]
Galaxy Lyman-break galaxy discovered by JWST[48][41]
F150DB-040 zp = 10.8+0.3
−0.2
Galaxy Lyman-break galaxy discovered by JWST[42]
EGS-14506 zp = 10.71+0.34
−0.62
Galaxy Lyman-break galaxy discovered by JWST[52]
MACS0647-JD zp = 10.6±0.3 Galaxy Gravitationally lensed into three images by a galaxy cluster; detected by JWST and Hubble[53][54]
GLASS-z10
(GLASS-1698)[50]
z = 10.38 Galaxy Lyman-break galaxy discovered by JWST; tentative (4.4σ) ALMA detection of [O III] emission line only[55][56]
EGS-7860 zp = 10.11+0.60
−0.82
Galaxy Lyman-break galaxy discovered by JWST[52]
SPT0615-JD zp = 9.9+0.8
−0.6
13.419[4] Galaxy [57]
A2744-JD zp≅9.8 13.412[4] Galaxy Galaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift.[58][59]
MACS1149-JD1 zp≅9.6 13.398[4][60] Candidate galaxy or protogalaxy
GRB 090429B zp≅9.4 13.383[4][61] Gamma-ray burst [62] The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.
UDFy-33436598 zp≅8.6 13.317[4] Candidate galaxy or protogalaxy [63]
UDFy-38135539 zp≅8.6 13.317[4] Candidate galaxy or protogalaxy A spectroscopic redshift of z = 8.55 was claimed for this source in 2010,[64] but has subsequently been shown to be mistaken.[65]
BoRG-58 zp≅8 13.258[4] Galaxy cluster or protocluster

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

List of most distant objects by type

Most distant object by type
Type Object Redshift
(distance)
Notes
Any astronomical object, no matter what type JADES-GS-z13-0 z = 13.20 Most distant galaxy with a spectroscopically-confirmed redshift (As of December 2022).[8] These are data from Webb science in progress as of 9 December 2022, which has not yet been through the peer-review process. The estimated light-travel distance is about 13.6 billion light-years (and a proper distance of approximately 33.6 billion light-years (10.3 billion parsecs) from Earth due to the Universe's expansion since the light we now observe left it about 13.6 billion years ago).[5]
See also: List of galaxies
Galaxy or protogalaxy
Galaxy cluster CL J1001+0220 z ≅ 2.506 As of 2016[66]
See also: List of galaxy clusters
Galaxy supercluster Hyperion proto-supercluster z = 2.45 This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date.[67]
See also: List of superclusters
Galaxy protocluster A2744z7p9OD z = 7.88 This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date.[68]
See also: List of galaxy groups and clusters
Quasar UHZ1 z ~ 10.0 [69]
See also: List of quasars
Black hole [69]
Star or protostar or post-stellar corpse
(detected by an event)
Progenitor of GRB 090423 z = 8.2 [70][26] Note, GRB 090429B has a photometric redshift zp≅9.4,[71] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
See also: List of gamma-ray bursts Estimated an approximate distance of 13 billion lightyears from Earth
Star or protostar or post-stellar corpse
(detected as a star)
WHL0137-LS (Earendel) z = 6.2 ± 0.1
(12.9 Gly)
Most distant individual star detected (March, 2022).[72][73]

Previous records include SDSS J1229+1122[74] and MACS J1149 Lensed Star 1.[75]

Star cluster The Sparkler z = 1.378
(13.9 Gly)
Galaxy with globular clusters gravitationally lensed in SMACS J0723.3-7327[76]
System of star clusters
X-ray jet PJ352–15 quasar jet z = 5.831
(12.7 Gly)[77]
The previous recordholder was at 12.4 Gly.[78][79]
Microquasar XMMU J004243.6+412519 (2.5 Mly) First extragalactic microquasar discovered[80][81][82]
Nebula-like object Himiko z = 6.595 Possibly one of the largest objects in the early universe.[83][84]
Magnetic field 9io9 z = 2.554 (11.1 Gly) Observations from ALMA has shown that the lensed galaxy 9io9 contains a magnetic field.
Planet SWEEPS-11 / SWEEPS-04 (27,710 ly) [85]
  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy.[86]
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).[87][88]
Most distant event by type
Type Event Redshift Notes
Gamma-ray burst GRB 090423 z = 8.2 [70][26] Note, GRB 090429B has a photometric redshift zp≅9.4,[71] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
See also: List of gamma-ray bursts
Core collapse supernova SN 1000+0216 z = 3.8993 [89]
Type Ia supernova SN UDS10Wil z = 1.914 [90]
Type Ia supernova SN SCP-0401
(Mingus)
z = 1.71 First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN.[91][92]
Cosmic Decoupling Cosmic Microwave Background Radiation creation z~1000 to 1089 [93][94]

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

Most Distant Object Titleholders (not including candidates based on photometric redshifts)
Object Type Date Distance
(z = Redshift)
Notes
JADES-GS-z13-0 Galaxy 2022 - present z = 13.20 [8]
GN-z11 Galaxy 2016–2022 z = 10.6 [14][15]
EGSY8p7 Galaxy 2015 − 2016 z = 8.68 [95][96][97][98]
Progenitor of GRB 090423 / Remnant of GRB 090423 Gamma-ray burst progenitor / Gamma-ray burst remnant 2009 − 2015 z = 8.2 [26][99]
IOK-1 Galaxy 2006 − 2009 z = 6.96 [99][100][101][102]
SDF J132522.3+273520 Galaxy 2005 − 2006 z = 6.597 [102][103]
SDF J132418.3+271455 Galaxy 2003 − 2005 z = 6.578 [103][104][105][106]
HCM-6A Galaxy 2002 − 2003 z = 6.56 The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28[104][105][107][108][109][110]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar 2001 − 2002 z = 6.28 [111][112][113][114][115][116]
SDSS 1044–0125
(SDSSp J104433.04–012502.2)
Quasar 2000 − 2001 z = 5.82 [117][118][115][116][119][120][121]
SSA22-HCM1 Galaxy 1999 − 2000 z>=5.74 [122][123]
HDF 4-473.0 Galaxy 1998 − 1999 z = 5.60 [123]
RD1 (0140+326 RD1) Galaxy 1998 z = 5.34 [124][125][126][123][127]
CL 1358+62 G1 & CL 1358+62 G2 Galaxies 1997 − 1998 z = 4.92 These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe.[125][128][129][126][123][130]
PC 1247–3406 Quasar 1991 − 1997 z = 4.897 [117][131][132][133][134]
PC 1158+4635 Quasar 1989 − 1991 z = 4.73 [117][134][135][136][137][138]
Q0051–279 Quasar 1987 − 1989 z = 4.43 [139][135][138][140][141][142]
Q0000–26
(QSO B0000–26)
Quasar 1987 z = 4.11 [139][135][143]
PC 0910+5625
(QSO B0910+5625)
Quasar 1987 z = 4.04 This was the second quasar discovered with a redshift over 4.[117][135][144][145]
Q0046–293
(QSO J0048–2903)
Quasar 1987 z = 4.01 [139][135][144][146][147]
Q1208+1011
(QSO B1208+1011)
Quasar 1986 − 1987 z = 3.80 This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45″.[144][148][149]
PKS 2000-330
(QSO J2003–3251, Q2000–330)
Quasar 1982 − 1986 z = 3.78 [144][150][151]
OQ172
(QSO B1442+101)
Quasar 1974 − 1982 z = 3.53 [152][153][154]
OH471
(QSO B0642+449)
Quasar 1973 − 1974 z = 3.408 Nickname was "the blaze marking the edge of the universe".[152][154][155][156][157]
4C 05.34 Quasar 1970 − 1973 z = 2.877 Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[154][158][159][160]
5C 02.56
(7C 105517.75+495540.95)
Quasar 1968 − 1970 z = 2.399 [130][160][161]
4C 25.05
(4C 25.5)
Quasar 1968 z = 2.358 [130][160][162]
PKS 0237–23
(QSO B0237–2321)
Quasar 1967 − 1968 z = 2.225 [158][162][163][164][165]
4C 12.39
(Q1116+12, PKS 1116+12)
Quasar 1966 − 1967 z = 2.1291 [130][165][166][167]
4C 01.02
(Q0106+01, PKS 0106+1)
Quasar 1965 − 1966 z = 2.0990 [130][165][166][168]
3C 9 Quasar 1965 z = 2.018 [165][169][170][171][172][173]
3C 147 Quasar 1964 − 1965 z = 0.545 [174][175][176][177]
3C 295 Radio galaxy 1960 − 1964 z = 0.461 [123][130][178][179][180]
LEDA 25177 (MCG+01-23-008) Brightest cluster galaxy 1951 − 1960 z = 0.2
(V = 61000 km/s)
This galaxy lies in the Hydra Supercluster. It is located at B1950.0  08h 55m 4s +03° 21′ and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732).[123][180][181][182][183][184][185]
LEDA 51975 (MCG+05-34-069) Brightest cluster galaxy 1936 – z = 0.13
(V = 39000 km/s)
The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0  14h 30m 6s +31° 46′ apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.[184][186][187]
LEDA 20221 (MCG+06-16-021) Brightest cluster galaxy 1932 – z = 0.075
(V = 23000 km/s)
This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0  07h 05m 0s +35° 04′[186][188]
BCG of WMH Christie's Leo Cluster Brightest cluster galaxy 1931 − 1932 z =
(V = 19700 km/s)
[188][189][190][191]
BCG of Baede's Ursa Major Cluster Brightest cluster galaxy 1930 − 1931 z =
(V = 11700 km/s)
[191][192]
NGC 4860 Galaxy 1929 − 1930 z = 0.026
(V = 7800 km/s)
[192][193][194]
NGC 7619 Galaxy 1929 z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.[193][195][196]
NGC 584
(Dreyer nebula 584)
Galaxy 1921 − 1929 z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.[184][193][195][197][198][199][200]
M104 (NGC 4594) Galaxy 1913 − 1921 z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.[193][197][200]
Arcturus
(Alpha Bootis)
Star 1891 − 1910 160 ly
(18 mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.[201][202][203][204]
Capella
(Alpha Aurigae)
Star 1849-1891 72 ly
(46 mas)
[205][206][207]
Polaris
(Alpha Ursae Minoris)
Star 1847 - 1849 50 ly
(80 mas)
(this is very inaccurate, true=~375 ly)
[208][209]
Vega
(Alpha Lyrae)
Star (part of a double star pair) 1839 - 1847 7.77 pc
(125 mas)
[208]
61 Cygni Binary star 1838 − 1839 3.48 pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured.[208][210][211]
Uranus Planet of the Solar System 1781 − 1838 18 AU This was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
Saturn Planet of the Solar System 1619 − 1781 10 AU From Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
Mars Planet of the Solar System 1609 − 1619 2.6 AU when Mars is diametrically opposed to Earth Kepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
Sun Star 3rd century BC — 1609 380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
Moon Moon of a planet 3rd century BC 20 Earth radii (very inaccurate, true=64 Earth radii) Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.
* z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion
  • mas represents parallax, a measure of angle and distance can be determined through trigonometry

List of objects by year of discovery that turned out to be most distant

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

Examples
Year of record Modern
light travel distance (Mly)
Object Type Detected using First record by (1)
964 2.5[212] Andromeda Galaxy Spiral galaxy naked eye Abd al-Rahman al-Sufi[213]
1654 3 Triangulum Galaxy Spiral galaxy refracting telescope Giovanni Battista Hodierna[214]
1785 76.4[215] NGC 584 Galaxy William Herschel
1880s 206 ± 29[216] NGC 1 Spiral galaxy Dreyer, Herschel
1959 2,400[217] 3C 273 Quasar Parkes Radio Telescope Maarten Schmidt, Bev Oke[218]
1960 5,000[219] 3C 295 Radio galaxy Palomar Observatory Rudolph Minkowski
Data missing from table
2009 13,000[220] GRB 090423 Gamma-ray burst progenitor Swift Gamma-Ray Burst Mission Krimm, H. et al.[221]

See also

References

  1. Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics 641: page A6 (see PDF page 15, Table 2: "Age/Gyr", last column). doi:10.1051/0004-6361/201833910. Bibcode2020A&A...641A...6P. 
  2. Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN 978-1-107-19789-3. 
  3. Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe" (in en). Publications of the Astronomical Society of Australia 21 (1): 97–109. doi:10.1071/AS03040. ISSN 1323-3580. Bibcode2004PASA...21...97D. https://www.cambridge.org/core/product/identifier/S132335800000607X/type/journal_article. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.90 4.91 Staff (2015). "UCLA Cosmological Calculator". UCLA. http://www.astro.ucla.edu/~wright/ACC.html.  Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model" )
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.60 5.61 5.62 5.63 5.64 5.65 5.66 5.67 5.68 5.69 5.70 5.71 5.72 5.73 5.74 5.75 5.76 5.77 5.78 5.79 5.80 5.81 5.82 5.83 5.84 Staff (2018). "UCLA Cosmological Calculator". UCLA. http://www.astro.ucla.edu/~wright/ACC.html.  Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model" )
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 Staff (2022). "ICRAR Cosmology Calculator". International Centre for Radio Astronomy Research. https://cosmocalc.icrar.org/.  ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model")
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49 7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59 7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69 7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79 7.80 7.81 7.82 Kempner, Joshua (2022). "KEMPNER Cosmology Calculator". Kempner.net. https://www.kempner.net/cosmic.php.  KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model")
  8. 8.0 8.1 8.2 8.3 8.4 8.5 Robertson, B. E. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy 7 (5): 611–621. doi:10.1038/s41550-023-01921-1. Bibcode2023NatAs...7..611R. 
  9. 9.0 9.1 9.2 Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (2023-07-25). "Supermassive Dark Star candidates seen by JWST" (in en). Proceedings of the National Academy of Sciences 120 (30): e2305762120. doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMID 37433001. Bibcode2023PNAS..12005762I. 
  10. 10.0 10.1 Wang, Bingjie (2023-11-13). "UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies". The Astrophysical Journal Letters 957 (2): L34. doi:10.3847/2041-8213/acfe07. ISSN 2041-8205. Bibcode2023ApJ...957L..34W. 
  11. Bakx, Tom J. L. C. (January 2023). "Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate". Monthly Notices of the Royal Astronomical Society 519 (4): 5076–5085. doi:10.1093/mnras/stac3723. 
  12. Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus et al. (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe". Nature 622 (7984): 707–711. doi:10.1038/s41586-023-06521-7. ISSN 0028-0836. PMID 37579792. Bibcode2023Natur.622..707A. 
  13. Harikane, Yuichi; Nakajima, Kimihiko; Ouchi, Masami; et al. (2023). "Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History From 25 Galaxies at $z_\mathrm{spec}=8.61-13.20$ Confirmed with JWST/NIRSpec". arXiv:2304.06658v3 [astro-ph.GA].
  14. 14.0 14.1 Oesch, P. A. et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal 819 (2): 129. doi:10.3847/0004-637X/819/2/129. Bibcode2016ApJ...819..129O. 
  15. 15.0 15.1 Jiang, Linhua (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957". Nature Astronomy 5 (3): 256–261. doi:10.1038/s41550-020-01275-y. Bibcode2021NatAs...5..256J. 
  16. Bunker, Andrew J. et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy". Astronomy & Astrophysics 677: A88. doi:10.1051/0004-6361/202346159. 
  17. Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco et al. (2023). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST". Nature Astronomy 618 (7965): 480–483. doi:10.1038/s41586-023-05994-w. PMID 37198479. Bibcode2023Natur.618..480R. 
  18. T. Hashimoto; N. Laporte; K. Mawatari; R. S. Ellis; A. K. Inoue; E. Zackrisson; G. Roberts-Borsani; W. Zheng et al. (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature 557 (7705): 312–313. doi:10.1038/s41586-018-0117-z. PMID 29765123. Bibcode2018Natur.557..392H. 
  19. Adi Zitrin; Ivo Labbe; Sirio Belli; Rychard Bouwens; Richard S. Ellis; Guido Roberts-Borsani; Daniel P. Stark; Pascal A. Oesch et al. (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal 810 (1): L12. doi:10.1088/2041-8205/810/1/L12. Bibcode2015ApJ...810L..12Z. 
  20. 20.0 20.1 20.2 Curti, Mirko (January 2023). "The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8". Monthly Notices of the Royal Astronomical Society 518 (1): 425–438. doi:10.1093/mnras/stac2737. Bibcode2023MNRAS.518..425C. 
  21. 21.0 21.1 21.2 Carnall, A. C. (January 2023). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters 518 (1): L45–L50. doi:10.1093/mnrasl/slac136. Bibcode2023MNRAS.518L..45C. 
  22. 22.0 22.1 22.2 Schaerer, D. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs". Astronomy & Astrophysics 665: 6. doi:10.1051/0004-6361/202244556. L4. Bibcode2022A&A...665L...4S. 
  23. 23.0 23.1 23.2 Katz, Harley (January 2023). "AFirst insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007". Monthly Notices of the Royal Astronomical Society 518 (1): 592–603. doi:10.1093/mnras/stac2657. Bibcode2023MNRAS.518..592K. 
  24. Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I. et al. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal 832 (2): L21. doi:10.3847/2041-8213/aa62aa. Bibcode2017ApJ...837L..21L. 
  25. Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y. et al. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal 874 (1): 27. doi:10.3847/1538-4357/ab0374. Bibcode2019ApJ...874...27T. 
  26. 26.0 26.1 26.2 26.3 Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T. et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature 461 (7268): 1254–7. doi:10.1038/nature08459. PMID 19865165. Bibcode2009Natur.461.1254T. 
  27. 27.0 27.1 Langeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi et al. (2022). "Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe". The Astrophysical Journal 804 (2). doi:10.1088/2041-8205/804/2/L30. Bibcode2015ApJ...804L..30O. 
  28. P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; I. Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit et al. (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal 804 (2): L30. doi:10.1088/2041-8205/804/2/L30. Bibcode2015ApJ...804L..30O. 
  29. Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal 826 (2): 113. doi:10.3847/0004-637X/826/2/113. Bibcode2016ApJ...826..113S. 
  30. Bañados, Eduardo (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature 553 (7689): 473–476. doi:10.1038/nature25180. PMID 29211709. Bibcode2018Natur.553..473B. 
  31. S. L. Finkelstein; C. Papovich; M. Dickinson; M. Song; V. Tilvi; A. M. Koekemoer; K. D. Finkelstein; B. Mobasher et al. (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature 502 (7472): 524–527. doi:10.1038/nature12657. PMID 24153304. Bibcode2013Natur.502..524F. 
  32. Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K. et al. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal 858 (2): 113. doi:10.3847/1538-4357/aab893. Bibcode2018ApJ...858...94L. 
  33. 33.0 33.1 33.2 Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S. et al. (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal 744 (2): 83. doi:10.1088/0004-637X/744/2/83. Bibcode2012ApJ...744...83O. 
  34. Inoue, Akio K. (June 2016). "Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch". Science 352 (6293): 1559–1562. doi:10.1126/science.aaf0714. PMID 27312046. Bibcode2016Sci...352.1559I. https://www.eso.org/public/archives/releases/sciencepapers/eso1620/eso1620a.pdf. 
  35. 35.0 35.1 Vanzella (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters 730 (2): L35. doi:10.1088/2041-8205/730/2/L35. Bibcode2011ApJ...730L..35V. 
  36. Daniel J. Mortlock et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature 474 (7353): 616–619. doi:10.1038/nature10159. PMID 21720366. Bibcode2011Natur.474..616M. 
  37. Schenker, Matthew A. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8". The Astrophysical Journal 744 (2): 7. doi:10.1088/0004-637X/744/2/179. Bibcode2012ApJ...744..179S. 
  38. Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S. et al. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal 725 (2): L205. doi:10.1088/2041-8205/725/2/L205. Bibcode2010ApJ...725L.205F. 
  39. Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin (2012). "A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field". The Astrophysical Journal 752 (2): L28. doi:10.1088/2041-8205/752/2/L28. Bibcode2012ApJ...752L..28R. 
  40. Bañados, Eduardo; Mazzucchelli, Chiara; Momjian, Emmanuel; Eilers, Anna-Christina; Wang, Feige; Schindler, Jan-Torge; Connor, Thomas; Andika, Irham Taufik et al. (2021). "The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82". The Astrophysical Journal (Harvard University) 909 (1): 80. doi:10.3847/1538-4357/abe239. Bibcode2021ApJ...909...80B. 
  41. 41.00 41.01 41.02 41.03 41.04 41.05 41.06 41.07 41.08 41.09 41.10 41.11 41.12 41.13 41.14 41.15 41.16 41.17 41.18 41.19 41.20 41.21 41.22 41.23 41.24 41.25 41.26 41.27 41.28 Adams, N. J. (November 2022). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society 518 (3): 4755–4766. doi:10.1093/mnras/stac3347. Bibcode2023MNRAS.518.4755A. 
  42. 42.00 42.01 42.02 42.03 42.04 42.05 42.06 42.07 42.08 42.09 42.10 42.11 42.12 42.13 42.14 42.15 42.16 42.17 42.18 42.19 42.20 42.21 42.22 42.23 42.24 42.25 42.26 42.27 42.28 42.29 42.30 42.31 42.32 42.33 42.34 42.35 42.36 42.37 42.38 42.39 42.40 42.41 42.42 42.43 Yan, Haojing (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters 942 (L9): 20. doi:10.3847/2041-8213/aca80c. Bibcode2023ApJ...942L...9Y. 
  43. "Our Latest Results". December 2012. http://www.firstgalaxies.org/the-latest-results. 
  44. 44.0 44.1 44.2 44.3 44.4 44.5 44.6 44.7 Harikane, Yuichi (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series 265 (1): 5. doi:10.3847/1538-4365/acaaa9. Bibcode2023ApJS..265....5H. 
  45. 45.0 45.1 Fujimoto, Seiji (2023). "ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?". The Astrophysical Journal 955 (2): 130. doi:10.3847/1538-4357/aceb67. Bibcode2023ApJ...955..130F. 
  46. 46.0 46.1 Morishita, Takahiro; Stiavelli, Massimo (2023). "Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323". The Astrophysical Journal Letters 946 (2): L35. doi:10.3847/2041-8213/acbf50. Bibcode2023ApJ...946L..35M. 
  47. Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken et al. (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series 265 (1): 5. doi:10.3847/1538-4365/acaaa9. Bibcode2023ApJS..265....5H. 
  48. 48.00 48.01 48.02 48.03 48.04 48.05 48.06 48.07 48.08 48.09 48.10 Hakim, Atek (November 2022). "Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723". Monthly Notices of the Royal Astronomical Society 519 (1): 1201–1220. doi:10.1093/mnras/stac3144. Bibcode2023MNRAS.519.1201A. 
  49. Harikane, Y. (April 2022). "A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16". The Astrophysical Journal 929 (1): 1. doi:10.3847/1538-4357/ac53a9. Bibcode2022ApJ...929....1H. 
  50. 50.00 50.01 50.02 50.03 50.04 50.05 50.06 50.07 50.08 50.09 50.10 50.11 Donnan, C. T. (November 2022). "The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 - 15 from deep JWST and ground-based near-infrared imaging". Monthly Notices of the Royal Astronomical Society 518 (4): 6011–6040. doi:10.1093/mnras/stac3472. Bibcode2023MNRAS.518.6011D. 
  51. 51.0 51.1 51.2 Bouwens, Rychard J. (2023). "Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF". Monthly Notices of the Royal Astronomical Society 523: 1036–1055. doi:10.1093/mnras/stad1145. 
  52. 52.0 52.1 Whitler, Lily (December 2022). "On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST". Monthly Notices of the Royal Astronomical Society 519 (1): 157–171. doi:10.1093/mnras/stac3535. Bibcode2023MNRAS.519..157W. 
  53. Coe, Dan; Zitrin, Adi; Carrasco, Mauricio; Shu, Xinwen; Zheng, Wei; Postman, Marc; Bradley, Larry; Koekemoer, Anton et al. (2013). "CLASH: Three Strongly Lensed Images of a Candidate z ~ 11 Galaxy". The Astrophysical Journal 762 (1): 32. doi:10.1088/0004-637x/762/1/32. Bibcode2013ApJ...762...32C. 
  54. Hsiao, Tiger Yu-Yang (2023). "JWST Reveals a Possible z ~ 11 Galaxy Merger in Triply Lensed MACS0647–JD". The Astrophysical Journal Letters 949 (2): L34. doi:10.3847/2041-8213/acc94b. Bibcode2023ApJ...949L..34H. 
  55. Naidu, Rohan P. (November 2022). "Two Remarkably Luminous Galaxy Candidates at z ≈ 10 − 12 Revealed by JWST". The Astrophysical Journal Letters 940 (1): 11. doi:10.3847/2041-8213/ac9b22. L14. Bibcode2022ApJ...940L..14N. 
  56. Yoon, Ilsang (2023). "ALMA Observation of a z ≳ 10 Galaxy Candidate Discovered with JWST". The Astrophysical Journal 950 (1): 61. doi:10.3847/1538-4357/acc94d. Bibcode2023ApJ...950...61Y. 
  57. Salmon, Brett; Coe, Dan; Bradley, Larry; Bradač, Marusa; Huang, Kuang-Han; Strait, Victoria; Oesch, Pascal; Paterno-Mahler, Rachel et al. (2018). "A Candidate z~10 Galaxy Strongly Lensed into a Spatially Resolved Arc". The Astrophysical Journal 864: L22. doi:10.3847/2041-8213/aadc10. 
  58. "Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass". NASA. 23 April 2015. http://www.nasa.gov/press/2014/october/nasa-s-hubble-finds-extremely-distant-galaxy-through-cosmic-magnifying-glass/#.VJBxQmTF_fY. 
  59. Zitrin, Adi; Zheng, Wei; Broadhurst, Tom; Moustakas, John; Lam, Daniel; Shu, Xinwen; Huang, Xingxing; Diego, Jose M. et al. (2014). "A Geometrically Supported z ~ 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744". The Astrophysical Journal 793 (1): L12. doi:10.1088/2041-8205/793/1/L12. Bibcode2014ApJ...793L..12Z. http://hub.hku.hk/bitstream/10722/206809/1/content.pdf. 
  60. "NASA Telescopes Spy Ultra-Distant Galaxy". NASA. http://www.nasa.gov/mission_pages/spitzer/news/spitzer20120919.html. 
  61. Penn State Science, "Cosmic Explosion is New Candidate for Most Distant Object in the Universe", Derek. B. Fox, Barbara K. Kennedy, 25 May 2011
  62. Space Daily, Explosion Helps Researcher Spot Universe's Most Distant Object, 27 May 2011
  63. "ESA Science & Technology: The Hubble eXtreme Deep Field (annotated)". http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=50876. 
  64. David Shiga. "Dim galaxy is most distant object yet found". New Scientist. https://www.newscientist.com/article/dn19603-dim-galaxy-is-most-distant-object-yet-found.html. 
  65. Bunker, Andrew J.; Caruana, Joseph; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lorenzoni, Silvio; Lacy, Mark; Jarvis, Matt J.; Hickey, Samantha (2013). "VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman &". Monthly Notices of the Royal Astronomical Society 430 (4): 3314. doi:10.1093/mnras/stt132. Bibcode2013MNRAS.430.3314B. 
  66. Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica et al. (2016). "Discovery of a galaxy cluster with a violently starbursting core at z=2.506". The Astrophysical Journal 828 (1): 56. doi:10.3847/0004-637X/828/1/56. Bibcode2016ApJ...828...56W. 
  67. Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fevre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K-G.; Bardelli, S. et al. (2018). "The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS". Astronomy & Astrophysics 619: A49. doi:10.1051/0004-6361/201833655. Bibcode2018A&A...619A..49C. 
  68. Morishita, Takahiro; Roberts-Borsani, Guido; Treu, Tommaso; Brammer, Gabriel; Mason, Charlotte A.; Trenti, Michele; Vulcani, Benedetta; Wang, Xin et al. (30 January 2023). "Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang". Astrophysical Journal Letters 947 (2). doi:10.3847/2041-8213/acb99e. Bibcode2023ApJ...947L..24M. 
  69. 69.0 69.1 Akos Bogdan (November 6, 2023), "Evidence for heavy-seed origin of early supermassive black holes from a z≈10 x-ray quasar", Nature Astronomy 8: 126–133, doi:10.1038/s41550-023-02111-9 
  70. 70.0 70.1 NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record", 28 April 2009
  71. 71.0 71.1 Science Codex, "GRB 090429B – most distant gamma-ray burst yet" , NASA/Goddard, 27 May 2011
  72. Welch, Brian (30 March 2022). "A highly magnified star at redshift 6.2". Nature 603 (7903): 815–818. doi:10.1038/s41586-022-04449-y. PMID 35354998. Bibcode2022Natur.603..815W. https://www.nature.com/articles/s41586-022-04449-y. Retrieved 30 March 2022. 
  73. Gianopoulos, Andrea (30 March 2022). "Record Broken: Hubble Spots Farthest Star Ever Seen". NASA. https://www.nasa.gov/feature/goddard/2022/record-broken-hubble-spots-farthest-star-ever-seen. 
  74. Camille M. Carlisle (12 April 2013). "The Most Distant Star Ever Seen?". Sky and Telescope. http://www.skyandtelescope.com/astronomy-news/the-most-distant-star-everseen/. 
  75. Kelly, Patrick L. et al. (2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature Astronomy 2 (4): 334–342. doi:10.1038/s41550-018-0430-3. Bibcode2018NatAs...2..334K. 
  76. Mowla, Lamiya (October 2022). "The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST". The Astrophysical Journal Letters 937 (2): 9. doi:10.3847/2041-8213/ac90ca. L35. Bibcode2022ApJ...937L..35M. 
  77. Connor, Thomas; Bañados, Eduardo; Stern, Daniel; Carilli, Chris; Fabian, Andrew; Momjian, Emmanuel; Rojas-Ruiz, Sofía; Decarli, Roberto et al. (2021). "Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years". The Astrophysical Journal 911 (2): 120. doi:10.3847/1538-4357/abe710. Bibcode2021ApJ...911..120C. 
  78. NASA.gov
  79. SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  80. ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  81. e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  82. SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  83. Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari et al. (2009-05-01). "Discovery of a Giant Lyα Emitter Near the Reionization Epoch". The Astrophysical Journal 696 (2): 1164–1175. doi:10.1088/0004-637X/696/2/1164. ISSN 0004-637X. Bibcode2009ApJ...696.1164O. https://ui.adsabs.harvard.edu/abs/2009ApJ...696.1164O. 
  84. Hsu, Jeremy (2009-04-22). "Giant Mystery Blob Discovered Near Dawn of Time". SPACE.com. http://www.space.com/scienceastronomy/090422-space-blob.html. 
  85. USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  86. Schneider, J.. "Notes for star PA-99-N2". Extrasolar Planets Encyclopaedia. http://exoplanet.eu/star.php?st=PA-99-N2. Retrieved 2010-08-06. 
  87. Exoplaneten.de, "The Microlensing Event of Q0957+561" (accessed 5 August 2010)
  88. Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B". Astrophysical Journal 464: 125. doi:10.1086/177304. Bibcode1996ApJ...464..125S. 
  89. Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.; Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki et al. (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature 491 (7423): 228–31. doi:10.1038/nature11521. PMID 23123848. Bibcode2012Natur.491..228C. 
  90. "Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference". www.spacetelescope.org. http://www.spacetelescope.org/images/heic1306d/. 
  91. Science Newsline, "The Farthest Supernova Yet for Measuring Cosmic History" , Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)
  92. Space.com, "Most Distant 'Standard Candle' Star Explosion Found", Mike Wall, 9 January 2013 (accessed 10 January 2013)
  93. Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B. et al. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". Astrophysical Journal Supplement 180 (2): 225–245. doi:10.1088/0067-0049/180/2/225. Bibcode2009ApJS..180..225H. 
  94. Redshift states the Cosmic microwave background radiation as having a redshift of z = 1089
  95. Jonathan Amos (3 March 2016). "Hubble sets new cosmic distance record". BBC News. https://www.bbc.com/news/science-environment-35721734. 
  96. Mike Wall (5 August 2015). "Ancient Galaxy Is Most Distant Ever Found". Space.com. http://www.space.com/30170-most-distant-galaxy-discovered.html. 
  97. W. M. Keck Observatory (6 August 2015). "A new record: Keck Observatory measures most distant galaxy". Astronomy Now. http://astronomynow.com/2015/08/06/a-new-record-keck-observatory-measures-most-distant-galaxy/. 
  98. Mario De Leo Winkler (15 July 2015). "The Farthest Object in the Universe". Huffington Post. http://www.huffingtonpost.com/mario-de-leo-winkler/the-farthest-object-in-th_b_7795982.html. 
  99. 99.0 99.1 New Scientist, "Most distant object in the universe spotted", Rachel Courtland, 22:32 27 April 2009 . Retrieved 2009-11-11.
  100. New Scientist, "First generation of galaxies glimpsed forming", 'David Shiga ', 19:01 13 September 2006 (accessed 2009/11/11)
  101. Iye, M; Ota, K; Kashikawa, N; Furusawa, H; Hashimoto, T; Hattori, T; Matsuda, Y; Morokuma, T et al. (2006). "A galaxy at a redshift z = 6.96". Nature 443 (7108): 186–8. doi:10.1038/nature05104. PMID 16971942. Bibcode2006Natur.443..186I. 
  102. 102.0 102.1 Taniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5". Proceedings of the International Astronomical Union 3 (S250): 429–436. doi:10.1017/S1743921308020796. Bibcode2008IAUS..250..429T. 
  103. 103.0 103.1 Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; Kodaira, Keiichi; Kaifu, Norio et al. (2005). "The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6". Publications of the Astronomical Society of Japan 57: 165–182. doi:10.1093/pasj/57.1.165. Bibcode2005PASJ...57..165T. http://pasj.asj.or.jp/v57/n1/570114/57012649.pdf. 
  104. 104.0 104.1 BBC News, Most distant galaxy detected, Tuesday, 25 March 2003, 14:28 GMT
  105. 105.0 105.1 SpaceRef, Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More, Monday, March 24, 2003
  106. Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; Ajiki, Masaru; Akiyama, Masayuki et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan 55 (2): L17. doi:10.1093/pasj/55.2.L17. Bibcode2003PASJ...55L..17K. 
  107. New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  108. BBC News, Far away stars light early cosmos, Thursday, 14 March 2002, 11:38 GMT
  109. Hu, E. M. (2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal 568 (2): L75–L79. doi:10.1086/340424. Bibcode2002ApJ...568L..75H. 
  110. "K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370". Hera.ph1.uni-koeln.de. 2008-04-14. http://hera.ph1.uni-koeln.de/~heintzma/U/Lens.htm. 
  111. Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J. et al. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal 123 (5): 2151. doi:10.1086/340077. Bibcode2002AJ....123.2151P. 
  112. The Astrophysical Journal, 578:702–707, 20 October 2002, A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524
  113. White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6". The Astronomical Journal 126 (1): 1–14. doi:10.1086/375547. Bibcode2003AJ....126....1W. 
  114. Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal 611 (1): L13–L16. doi:10.1086/423669. Bibcode2004ApJ...611L..13F. 
  115. 115.0 115.1 PennState Eberly College of Science, Discovery Announced of Two Most Distant Objects , June 2001
  116. 116.0 116.1 SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  117. 117.0 117.1 117.2 117.3 PennState – Eberly College of Science – Science Journal – Summer 2000 – Vol. 17, No. 1 International Team of Astronomers Finds Most Distant Object
  118. The Astrophysical Journal Letters, 522:L9–L12, 1999 September 1, An Extremely Luminous Galaxy at z = 5.74
  119. PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite , Dec 2000
  120. UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies – (Last Updated 10th February 2005)
  121. SPACE.com, Most Distant Object in Universe Comes Closer, 01 December 2000
  122. The Astrophysical Journal Letters, 522:L9–L12, September 1, 1999, An Extremely Luminous Galaxy at z = 5.74
  123. 123.0 123.1 123.2 123.3 123.4 123.5 Publications of the Astronomical Society of the Pacific, 111: 1475–1502, 1999 December; Search Techniques for Distant Galaxies; Introduction
  124. New York Times, Peering Back in Time, Astronomers Glimpse Galaxies Aborning, October 20, 1998
  125. 125.0 125.1 Astronomy Picture of the Day, A Baby Galaxy, March 24, 1998
  126. 126.0 126.1 Dey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34". The Astrophysical Journal 498 (2): L93. doi:10.1086/311331. Bibcode1998ApJ...498L..93D. 
  127. "A New Most Distant Object: z = 5.34". Astro.ucla.edu. http://www.astro.ucla.edu/~wright/old_new_cosmo.html#12Mar98. 
  128. Astronomy Picture of the Day, Behind CL1358+62: A New Farthest Object, July 31, 1997
  129. Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62". The Astrophysical Journal 486 (2): L75. doi:10.1086/310844. Bibcode1997ApJ...486L..75F. 
  130. 130.0 130.1 130.2 130.3 130.4 130.5 Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science 269/270: 165–181. doi:10.1023/a:1017052809781. Bibcode1999Ap&SS.269..165I. http://nedwww.ipac.caltech.edu/level5/Illingworth/Ill8.html. 
  131. Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G. et al. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4". The Astronomical Journal 108: 1147. doi:10.1086/117143. Bibcode1994AJ....108.1147S. https://authors.library.caltech.edu/74253/2/1994AJ____108_1147S.pdf. 
  132. New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  133. FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar December 8, 1998
  134. 134.0 134.1 Hook, Isobel M.; McMahon, Richard G. (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.01". Monthly Notices of the Royal Astronomical Society 294 (1): L7–L12. doi:10.1046/j.1365-8711.1998.01368.x. Bibcode1998MNRAS.294L...7H. 
  135. 135.0 135.1 135.2 135.3 135.4 Turner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects". Astronomical Journal 101: 5. doi:10.1086/115663. Bibcode1991AJ....101....5T. 
  136. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  137. Cowie, Lennox L. (1991). "Young Galaxies". Annals of the New York Academy of Sciences 647 (1 Texas/ESO–Cer): 31–41. doi:10.1111/j.1749-6632.1991.tb32157.x. Bibcode1991NYASA.647...31C. 
  138. 138.0 138.1 New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  139. 139.0 139.1 139.2 Warren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature 330 (6147): 453. doi:10.1038/330453a0. Bibcode1987Natur.330..453W. 
  140. Levshakov, S. A. (1989). "Absorption spectra of quasars". Astrophysics 29 (2): 657–671. doi:10.1007/BF01005972. Bibcode1988Ap.....29..657L. 
  141. New York Times , Objects Detected in Universe May Be the Most Distant Ever Sighted, January 14, 1988
  142. New York Times, Astronomers Peer Deeper Into Cosmos, May 10, 1988
  143. SIMBAD, Object query : Q0000-26, QSO B0000-26 – Quasar
  144. 144.0 144.1 144.2 144.3 Schmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04". Astrophysical Journal 321: L7. doi:10.1086/184996. Bibcode1987ApJ...321L...7S. 
  145. SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  146. Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4". Nature 325 (6100): 131. doi:10.1038/325131a0. Bibcode1987Natur.325..131W. 
  147. SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  148. SIMBAD, Object query : Q1208+1011, QSO B1208+1011 – Quasar
  149. New Scientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  150. Orwell Astronomical Society (Ipswich) – OASI; Archived Astronomy News Items, 1972–1997
  151. SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 – Quasar
  152. 152.0 152.1 OSU Big Ear, History of the OSU Radio Observatory
  153. SIMBAD, Object query : OQ172, QSO B1442+101 – Quasar
  154. 154.0 154.1 154.2 "QUASARS – THREE YEARS LATER". http://www.reciprocalsystem.com/ce/q3y.htm. 
  155. Time Magazine, The Edge of Night, Monday, Apr. 23, 1973
  156. SIMBAD, Object query : OH471, QSO B0642+449 – Quasar
  157. Warren, S J; Hewett, P C (1990). "The detection of high-redshift quasars". Reports on Progress in Physics 53 (8): 1095. doi:10.1088/0034-4885/53/8/003. Bibcode1990RPPh...53.1095W. 
  158. 158.0 158.1 The Structure of the Physical Universe, Volume III – The Universe of Motion, CHAPTER 23 – Quasar Redshifts , by Dewey Bernard Larson ISBN:0-913138-11-8, 1984
  159. Bahcall, John N.; Oke, J. B. (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". Astrophysical Journal 163: 235. doi:10.1086/150762. Bibcode1971ApJ...163..235B. 
  160. 160.0 160.1 160.2 Lynds, R.; Wills, D. (1970). "The Unusually Large Redshift of 4C 05.34". Nature 226 (5245): 532. doi:10.1038/226532a0. PMID 16057373. Bibcode1970Natur.226..532L. 
  161. SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 – Quasar
  162. 162.0 162.1 Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". Astrophysical Journal 154: L41. doi:10.1086/180265. Bibcode1968ApJ...154L..41B. 
  163. Time Magazine, A Farther-Out Quasar, Friday, Apr. 07, 1967
  164. SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 – Quasar
  165. 165.0 165.1 165.2 165.3 Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". Astrophysical Journal 147: 851. doi:10.1086/149072. Bibcode1967ApJ...147..851B. 
  166. 166.0 166.1 Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  167. SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  168. SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  169. Time Magazine, Toward the Edge of the Universe, Friday, May. 21, 1965
  170. Time Magazine, The Quasi-Quasars, Friday, Jun. 18, 1965
  171. The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  172. Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". Astrophysical Journal 141: 1295. doi:10.1086/148217. Bibcode1965ApJ...141.1295S. 
  173. The Discovery of Radio Galaxies and Quasars, 1965
  174. Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Quasi-Stellar Sources and Gravitational Collapse: 269. Bibcode1965qssg.conf..269S. 
  175. Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM". Astronomical Journal 103: 1451. doi:10.1086/116159. Bibcode1992AJ....103.1451S. 
  176. Time Magazine, Finding the Fastest Galaxy: 76,000 Miles per Second , Friday, Apr. 10, 1964
  177. Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Astrophysical Journal 139: 781. doi:10.1086/147815. Bibcode1964ApJ...139..781S. 
  178. "The Discovery of Radio Galaxies and Quasars". http://www.astro.caltech.edu/~george/ay21/qso.txt. 
  179. McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies". Annual Review of Astronomy and Astrophysics 31: 639–688. doi:10.1146/annurev.aa.31.090193.003231. Bibcode1993ARA&A..31..639M. 
  180. 180.0 180.1 Sandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models". Astrophysical Journal 133: 355. doi:10.1086/147041. Bibcode1961ApJ...133..355S. 
  181. Hubble, E. P. (1953). "The law of red shifts (George Darwin Lecture)". Monthly Notices of the Royal Astronomical Society 113 (6): 658–666. doi:10.1093/mnras/113.6.658. Bibcode1953MNRAS.113..658H. 
  182. Sandage, Allan. "Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation". Annu. Rev. Astron. Astrophys. 1988 (26): 561–630. http://nedwww.ipac.caltech.edu/level5/Sept01/Sandage/Sand6.html. 
  183. Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae". Astronomical Journal 61: 97. doi:10.1086/107297. Bibcode1956AJ.....61...97H. 
  184. 184.0 184.1 184.2 "1053 May 8 meeting of the Royal Astronomical Society". The Observatory 73: 97. 1953. Bibcode1953Obs....73...97.. 
  185. Merrill, Paul W. (1958). "From Atoms to Galaxies". Astronomical Society of the Pacific Leaflets 7 (349): 393. Bibcode1958ASPL....7..393M. 
  186. 186.0 186.1 Humason, M. L. (January 1936). "The Apparent Radial Velocities of 100 Extra-Galactic Nebulae". The Astrophysical Journal 83: 10. doi:10.1086/143696. Bibcode1936ApJ....83...10H. 
  187. "The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  188. 188.0 188.1 Chant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)". Journal of the Royal Astronomical Society of Canada 26: 180. Bibcode1932JRASC..26..180C. 
  189. Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae". The Astrophysical Journal 74: 35. doi:10.1086/143287. Bibcode1931ApJ....74...35H. 
  190. Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". The Astrophysical Journal 74: 43. doi:10.1086/143323. Bibcode1931ApJ....74...43H. 
  191. 191.0 191.1 Humason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae". Leaflet of the Astronomical Society of the Pacific 1 (37): 149. Bibcode1931ASPL....1..149H. 
  192. 192.0 192.1 Humason, M. L. (1930). "The Rayton short-focus spectrographic objective". Astrophysical Journal 71: 351. doi:10.1086/143255. Bibcode1930ApJ....71..351H. 
  193. 193.0 193.1 193.2 193.3 Trimble, Virginia (1996). "H_0: The Incredible Shrinking Constant, 1925–1975". Publications of the Astronomical Society of the Pacific 108: 1073. doi:10.1086/133837. Bibcode1996PASP..108.1073T. https://escholarship.org/content/qt0tg0q2qx/qt0tg0q2qx.pdf?t=nlq2m6. 
  194. "The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929". Publications of the Astronomical Society of the Pacific 41 (242): 244. 1929. doi:10.1086/123945. Bibcode1929PASP...41..244.. 
  195. 195.0 195.1 From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3; The Large Radial Velocity of N. G. C. 7619; January 17, 1929
  196. The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621; EDWIN HUBBLE 1889–1953
  197. 197.0 197.1 National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher; ISBN:0-309-03099-4
  198. Bailey, S. I. (1920). "Comet Skjellerup". Harvard College Observatory Bulletin 739: 1. Bibcode1920BHarO.739....1B. 
  199. New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.; January 19, 1921, Wednesday
  200. 200.0 200.1 New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.; January 18, 1921, Tuesday
  201. Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  202. Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  203. Nelson Evening Mail, "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  204. "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  205. "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  206. (in German) Kosmos: Entwurf einer physischen Weltbeschreibung, Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  207. "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  208. 208.0 208.1 208.2 The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  209. The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  210. SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" . Retrieved 11 November 2009.
  211. Harper's New Monthly Magazine, "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
  212. Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (February 2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal 583 (2): 712–726. doi:10.1086/345430. Bibcode2003ApJ...583..712J. 
  213. Kepple, George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1. Willmann-Bell, Inc.. p. 18. ISBN 978-0-943396-58-3. 
  214. Fodera-Serio, G.; Indorato, L.; Nastasi, P. (February 1985). "Hodierna's Observations of Nebulae and his Cosmology". Journal for the History of Astronomy 16 (1): 1–36. doi:10.1177/002182868501600101. Bibcode1985JHA....16....1F. 
  215. "The OBEY Survey – NGC 584". http://www.astro.yale.edu/obey/cgi-bin/catalog.cgi?n584. 
  216. "Distance Results for NGC 0001". NASA/IPAC Extragalactic Database. http://nedwww.ipac.caltech.edu/cgi-bin/nDistance?name=NGC+0001. 
  217. Falla, D. F.; Evans, A. (1972). "On the Mass and Distance of the Quasi-Stellar Object 3C 273". Astrophysics and Space Science 15 (3): 395. doi:10.1007/BF00649767. Bibcode1972Ap&SS..15..395F. 
  218. Variable Star Of The Season
  219. Minkowski, R. (1960). "A New Distant Cluster of Galaxies". Astrophysical Journal 132: 908. doi:10.1086/146994. Bibcode1960ApJ...132..908M. 
  220. "Exploding star is oldest object seen in universe". Cnn.com. 2009-04-29. http://www.cnn.com/2009/TECH/04/29/gamma.ray.burst.space/index.html. 
  221. Krimm, H. (2009). "GRB 090423: Swift detection of a burst". GCN Circulars 9198: 1. Bibcode2009GCN..9198....1K. http://gcn.gsfc.nasa.gov/gcn3/9198.gcn3.