Astronomy:List of most massive stars

From HandWiki
Short description: None

This is a list of the most massive stars that have been discovered, in solar mass units (M).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to constant revision of their masses and other characteristics. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars' temperatures and absolute brightnesses. All the masses listed below are uncertain: Both the theory and the measurements are pushing the limits of current knowledge and technology. Both theories and measurements could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Artist's impression of disc of obscuring material around a massive star.

Complications with distance and obscuring clouds

Since massive stars are rare, astronomers must look very far from Earth to find them. All the listed stars are many thousands of light years away, which makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by extremely powerful stellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses, which greatly complicates the issue of estimating internal chemical compositions and structures.[lower-alpha 1] This obstruction leads to difficulties in calculating parameters.

Eta Carinae is the bright spot hidden in the double-lobed dust cloud. It is the most massive star that has a Bayer designation. It was only discovered to be (at least) two stars in the past few decades.

Both the obscuring clouds and the great distances make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely to distinguish by our telescopes, each star being massive in itself but not necessarily "supermassive" to either be on this list, or near the top of it. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter.

More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100–200 solar mass range,[1] so all mass estimates exceeding this range are suspect.

Rare reliable estimates

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR 21a, and WR 20a. Masses for all three were obtained from orbital measurements.[lower-alpha 2] This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

Some stars may once have been more massive than they are today. It is likely that many large stars have suffered significant mass loss (perhaps as much as several tens of solar masses). This mass may have been expelled by superwinds: high velocity winds that are driven by the hot photosphere into interstellar space. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infusing the region with elements heavier than hydrogen or helium.[lower-alpha 3]

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars, or are supernova impostors; today we see only their debris.[lower-alpha 4] The masses of the precursor stars that fueled these destructive events can be estimated from the type of explosion and the energy released, but those masses are not listed here (see § Black holes below).

Mass limits

There are two related theoretical limits on how massive a star can possibly be: the accretion limit and the Eddington mass limit. The accretion limit is related to star formation: After about 120 M have accreted in a protostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a point where it evaporates away material as fast as it collects new material. The Eddington limit is based on light pressure from the core of an already-formed star: As mass increases past ~150 M, the intensity of light radiated from a Population I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space.

Accretion limits

Astronomers have long hypothesized that as a protostar grows to a size beyond 120 M, something drastic must happen.[2] Although the limit can be stretched for very early Population III stars, and although the exact value is uncertain, if any stars still exist above 150–200 M they would challenge current theories of stellar evolution.

Studying the Arches Cluster, which is currently the densest known cluster of stars in our galaxy, astronomers have confirmed that no stars in that cluster exceed about 150 M.

The R136 cluster is an unusually dense collection of young, hot, blue stars.

Rare ultramassive stars that exceed this limit – for example in the R136 star cluster – might be explained by the following proposal: Some of the pairs of massive stars in close orbit in young, unstable multiple-star systems must occasionally collide and merge, when certain unusual circumstances hold that make a collision possible.[3]

Eddington mass limit

Main page: Astronomy:Eddington luminosity

Eddington's limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star's core exceeds the inward pull of its own gravity. The lowest mass for which this effect is active is the Eddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars luminosities increase far out of proportion to the increase in their masses. The Eddington limit is the point beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars. Before their demise, the hypothetical metal-free Population III stars would have had the highest allowed mass, somewhere around 300 M.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys–Davidson limit is used instead.[4]

List of the most massive known stars

Legend
Wolf–Rayet star
Luminous blue variable
O-type star
B-type star

The following two lists show a few of the known stars, including the stars in open cluster, OB association and H II region. Despite their high luminosity, many of them are nevertheless too distant to be observed with the naked eye. Stars that are at least sometimes visible to the unaided eye have their apparent magnitude (6.5 or brighter) highlighted in blue.

The first list gives stars that are estimated to be 60 M or larger; the majority of which are shown. The second list includes some notable stars which are below 60 M for the purpose of comparison. The method used to determine each star's mass is included to give an idea of the data's uncertainty; note that the mass of binary stars can be determined far more accurately. The masses listed below are the stars' current (evolved) mass, not their initial (formation) mass.

Stars with 60 M or greater
Star name Mass
(M, Sun = 1)
Approx. distance
from Earth (ly)
Apparent
visible magnitude
Effective
temperature (K)
Estimation
method
Link Reference
BAT99-98 (in Tarantula Nebula of LMC) 226 165,000 13.37 45,000 Spectroscopy SIMBAD [5][6]
R136a1 (in Tarantula Nebula of LMC) 196 163,000 12.23 46,000 Evolution SIMBAD [7][8]
Melnick 42 (in Tarantula Nebula of LMC) 189 163,000 12.78 47,300 Spectroscopy SIMBAD [9][6]
VFTS 1022 (in Tarantula Nebula of LMC) 178 164,000 13.47 42,200 Spectroscopy SIMBAD [9][6]
Westerhout 51-57 (in Westerhout 51) 160 20,000 16.66
(J band)
42,700 Evolution [10]
R136a3 (in Tarantula Nebula of LMC) 155 163,000 12.97 50,000 Evolution SIMBAD [7][8]
VFTS 682 (in Tarantula Nebula of LMC) 153 164,000 16.08 52,200 Spectroscopy SIMBAD [11][6]
HD 15558 A (in IC 1805 of Heart Nebula) 152 24,400 7.87
(combined)
39,500 Binary SIMBAD [12][13]
R136a2 (in Tarantula Nebula of LMC) 151 163,000 12.34 50,000 Evolution SIMBAD [7][8]
Westerhout 51-3 (in Westerhout 51) 148 20,000 17.79
(J band)
39,800 Evolution SIMBAD [10]
Melnick 34 A (in Tarantula Nebula of LMC) 147 163,000 13.09
(combined)
53,000 Binary SIMBAD [14][6]
VFTS 482 (in Tarantula Nebula of LMC) 145 164,000 12.95 42,200 Spectroscopy SIMBAD [9][6]
R136c (in Tarantula Nebula of LMC) 142 163,000 13.43 51,000 Evolution SIMBAD [15][6]
VFTS 1021 (in Tarantula Nebula of LMC) 141 164,000 13.35 39,800 Spectroscopy SIMBAD [9][6]
LH 10-3209 A (in NGC 1763 of LMC) 140 160,000 11.859
(combined)
42,500 Spectroscopy SIMBAD [16][17][lower-alpha 5]
VFTS 506 (in Tarantula Nebula of LMC) 138 164,000 13.31 47,300 Spectroscopy SIMBAD [11][6]
Melnick 34 B (in Tarantula Nebula of LMC) 136 163,000 13.09
(combined)
53,000 Binary SIMBAD [14][6]
Westerhout 51d (in Westerhout 51) 135 20,000 15.11
(J band)
42,700 Evolution [10]
VFTS 545 (in Tarantula Nebula of LMC) 133 164,000 13.32 47,300 Spectroscopy SIMBAD [9][6]
HD 97950 B (WR 43b in HD 97950 of NGC 3603) 132 24,800 11.33 42,000 Spectroscopy SIMBAD [18][19]
HD 269810 (in NGC 2029 of LMC) 130 163,000 12.22 52,500 Spectroscopy SIMBAD
R136a7 (in Tarantula Nebula of LMC) 127 163,000 13.97 54,000 Evolution SIMBAD [20][6]
WR 42e (in HD 97950 of NGC 3603) 123 25,000 14.53 43,000 Ejection SIMBAD [21][lower-alpha 6]
HD 97950 A1a (WR 43a A in HD 97950 of NGC 3603) 120 24,800 11.18
(combined)
42,000 Binary SIMBAD [18][19]
LSS 4067 (in HM 1) 120 11,000 11.44 40,000 Evolution SIMBAD
WR 93 (in Pismis 24 of NGC 6357) 120 5,900 10.68 71,000 Evolution SIMBAD [22][13]
Sk -69° 212 (in NGC 2044 of LMC) 119 160,000 12.416 45,400 Evolution SIMBAD
Sk -69° 249 A (in NGC 2074 of LMC) 119 160,000 12.02
(combined)
38,900 Evolution SIMBAD [23][24]
ST5-31 (in NGC 2074 of LMC) 119 160,000 12.273 50,700 Evolution SIMBAD [23][25]
R136a5 (in Tarantula Nebula of LMC) 116 157,000 13.71 48,000 Evolution SIMBAD [20][6]
MSP 183 (in Westerlund 2) 115 20,000 13.878 46,300 Spectroscopy SIMBAD [26][27]
WR 24 (in Collinder 228 of Carina Nebula) 114 14,000 6.48 50,100 Evolution SIMBAD [28][29]
HD 97950 C1 (WR 43c A in HD 97950 of NGC 3603) 113 24,800 11.89
(combined)
44,000 Spectroscopy SIMBAD [18][19][lower-alpha 5]
Arches-F9 (WR 102ae in Arches Cluster) 111.3 25,000 16.1
(J band)
36,600 Spectroscopy SIMBAD [30][31]
Cygnus OB2 #12 A (in Cygnus OB2) 110 5,200 11.702
(combined)
13,700 Spectroscopy SIMBAD [32][33][lower-alpha 5]
HD 93129 Aa (in Trumpler 14 of Carina Nebula) 110 7,500 6.9
(combined)
42,500 Trinary SIMBAD [34][13]
HSH95-36 (in Tarantula Nebula of LMC) 110 163,000 14.41 49,500 Evolution SIMBAD [20][6]
R146 (in Tarantula Nebula of LMC) 109 164,000 13.11 63,000 Spectroscopy SIMBAD [5][6]
R136a4 (in Tarantula Nebula of LMC) 108 157,000 13.41 50,000 Evolution SIMBAD [20][6]
VFTS 621 (in Tarantula Nebula of LMC) 107 164,000 15.39 54,000 Spectroscopy SIMBAD [9][6]
R136a6 (in Tarantula Nebula of LMC) 105 157,000 13.35 52,000 Evolution SIMBAD [20][6]
Westerhout 49-3 (in Westerhout 49) 105 36,200 16.689
(J band)
40,700 Evolution SIMBAD [35][36]
WR 21a A (Runaway star from Westerlund 2) 103.6 26,100 12.661 (combined) 45,000 Binary SIMBAD [37][38]
R99 (in N44 of LMC) 103 164,000 11.52 28,000 Spectroscopy SIMBAD [5][13]
Arches-F6 (WR 102ah in Arches Cluster) 101 25,000 15.75
(J band)
33,900 Spectroscopy SIMBAD [30][31]
Sk -65° 47 (in NGC 1923 of LMC) 101 160,000 12.466 47,800 Evolution SIMBAD [23][17]
Arches-F1 (WR 102ad in Arches Cluster) 100.9 25,000 16.3
(J band)
33,200 Spectroscopy SIMBAD [30][31]
Peony Star (WR 102ka in Peony Nebula near Galactic Center) 100 26,000 12.978
(J band)
25,100 Spectroscopy SIMBAD [39][36]
VFTS 457 (in Tarantula Nebula of LMC) 100 164,000 13.74 39,800 Spectroscopy SIMBAD [9][6]
η Carinae A (in Trumpler 16 of Carina Nebula) 100 7,500 4.3
(combined)
9,400–35,200 Spectroscopy SIMBAD [40][41]
Mercer 30-1 A (WR 46-3 A in Mercer 30 of Dragonfish Nebula) 99 40,000 10.33
(J band)
32,200 Evolution SIMBAD [42][lower-alpha 7][lower-alpha 5]
Sk -68° 137 (in Tarantula Nebula of LMC) 99 160,000 13.346 50,000 Spectroscopy SIMBAD [16][17]
WR 25 A (in Trumpler 16 of Carina Nebula) 98 6,500 8.8
(combined)
50,100 Evolution SIMBAD [28][13][lower-alpha 5]
BI 253 (runaway star from Tarantula Nebula of LMC) 97.6 164,000 13.76 54,000 Spectroscopy SIMBAD [15][43]
R136a8 (in Tarantula Nebula of LMC) 96 157,000 14.42 49,500 Evolution SIMBAD [20][44]
HD 38282 B (in Tarantula Nebula of LMC) 95 163,000 11.11
(combined)
47,000 Binary SIMBAD [45][38]
HM 1-6 (in HM 1) 95 11,000 11.64 44,700 Evolution SIMBAD [22][46]
NGC 3603-42 (in HD 97950 of NGC 3603) 95 25,000 12.86 50,000 Spectroscopy SIMBAD [16][19]
R139 A (in Tarantula Nebula of LMC) 95 163,000 11.94
(combined)
35,000 Binary SIMBAD [5][6]
BAT99-6 (in NGC 1747 of LMC) 94 165,000 11.95 56,000 Spectroscopy SIMBAD [5][17]
Sk -66° 172 (in N64 of LMC) 94 160,000 13.1 46,300 Spectroscopy SIMBAD [16][17][lower-alpha 8]
ST2-22 (in NGC 2044 of LMC) 94 160,000 14.3 51,300 Evolution SIMBAD [23][47]
VFTS 259 (in Tarantula Nebula of LMC) 94 164,000 13.65 37,600 Spectroscopy SIMBAD [9][6]
VFTS 562 (in Tarantula Nebula of LMC) 94 164,000 13.66 42,200 Spectroscopy SIMBAD [9][6]
VFTS 512 (in Tarantula Nebula of LMC) 93 164,000 14.28 47,300 Spectroscopy SIMBAD [9][6]
HD 97950 A1b (WR 43a B in HD 97950 of NGC 3603) 92 24,800 11.18
(combined)
40,000 Binary SIMBAD [18][19]
R136b (in Tarantula Nebula of LMC) 92 163,000 13.24 35,500 Evolution SIMBAD [20][6]
VFTS 16 (in Tarantula Nebula of LMC) 91.6 164,000 13.55 50,600 Spectroscopy SIMBAD [15][6]
HD 97950 A3 (in HD 97950 of NGC 3603) 91 24,800 12.95 50,000 Spectroscopy SIMBAD [16][19]
NGC 346-W1 (in NGC 346 of SMC) 91 200,000 12.57 43,400 Evolution SIMBAD [23][48]
Westerhout 49-2 (in Westerhout 49) 90–240, 250±120 36,200 18.246
(J band)
35,500 Spectroscopy SIMBAD [35][36]
R127 (in NGC 2055 of LMC) 90 160,000 10.15 10,000–27,000 Evolution SIMBAD [49][38]
VFTS 333 (in Tarantula Nebula of LMC) 90 164,000 12.49 37,600 Spectroscopy SIMBAD [9][6]
VFTS 267 (in Tarantula Nebula of LMC) 89 164,000 13.49 44,700 Spectroscopy SIMBAD [9][6]
VFTS 64 (in Tarantula Nebula of LMC) 88 164,000 14.621 39,800 Spectroscopy SIMBAD [9][17]
BAT99-80 A (in NGC 2044 of LMC) 87 165,000 13
(combined)
45,000 Spectroscopy SIMBAD [23][47]
R140b (in Tarantula Nebula of LMC) 87 165,000 12.66 47,000 Spectroscopy SIMBAD [5][6]
VFTS 542 (in Tarantula Nebula of LMC) 87 164,000 13.47 44,700 Spectroscopy SIMBAD [9][6]
VFTS 599 (in Tarantula Nebula of LMC) 87 164,000 13.8 44,700 Spectroscopy SIMBAD [9][6]
WR 89 (in HM 1) 87 11,000 11.02 39,800 Evolution SIMBAD [28][38]
Arches-F7 (WR 102aj in Arches Cluster) 86.3 25,000 15.74
(J band)
32,900 Spectroscopy SIMBAD [30][31]
Sk -69° 104 (in NGC 1910 of LMC) 86 160,000 12.1 39,900 Evolution SIMBAD [23][17]
VFTS 1017 (in Tarantula Nebula of LMC) 86 164,000 14.5 50,100 Spectroscopy SIMBAD [9][6]
LH 10-3061 (in NGC 1763 of LMC) 85 160,000 13.491 52,000 Spectroscopy SIMBAD [16][17]
Sk 80 (in NGC 346 of SMC) 85 200,000 12.31 38,900 Evolution SIMBAD [23][50]
VFTS 603 (in Tarantula Nebula of LMC) 85 164,000 13.99 42,200 Spectroscopy SIMBAD [9][6]
Sk -70° 91 (in BSDL 1830 of LMC) 84.09 165,000 12.78 48,900 Evolution SIMBAD [51][17][lower-alpha 9]
R147 (in Tarantula Nebula of LMC) 84 164,000 12.993 47,300 Spectroscopy SIMBAD [9][52]
HD 93250 A (in Trumpler 16 of Carina Nebula) 83.3 7,500 7.5
(combined)
46,000 Evolution SIMBAD [53][13][lower-alpha 5]
Melnick 33Na A (in Tarantula Nebula of LMC) 83 163,000 13.79
(combined)
50,000 Evolution SIMBAD [54][55]
WR 20a A (in Westerlund 2) 82.7 20,000 13.28
(combined)
43,000 Binary SIMBAD [56]
TIC 276934932 A (in NGC 2048 of LMC) 82 160,000 14.05
(combined)
45,000 Spectroscopy SIMBAD [16][17]
WR 20a B (in Westerlund 2) 81.9 20,000 13.28
(combined)
43,000 Binary SIMBAD [56]
Trumpler 27-27 (in Trumpler 27) 81 3,900 13.31 37,000 Evolution SIMBAD [22][38]
BAT99-96 (in Tarantula Nebula of LMC) 80 165,000 13.76 42,000 Spectroscopy SIMBAD [5][6]
HD 15570 (in IC 1805 of Heart Nebula) 80 7,500 8.11 46,000 Spectroscopy SIMBAD [12][13]
HD 38282 A (in Tarantula Nebula of LMC) 80 163,000 11.11
(combined)
47,000 Binary SIMBAD [45][38]
HSH95-46 (in Tarantula Nebula of LMC) 80 163,000 14.56 47,500 Evolution SIMBAD [20][6]
Arches-F15 (in Arches Cluster) 79.7 25,000 16.12
(J band)
35,600 Spectroscopy SIMBAD [30][31]
BI 237 (in BSDL 2527 of LMC) 79.66 165,000 13.83 51,300 Spectroscopy SIMBAD [51][17][lower-alpha 10]
VFTS 94 (in Tarantula Nebula of LMC) 79 164,000 14.161 42,200 Spectroscopy SIMBAD [9][17]
VFTS 151 (in Tarantula Nebula of LMC) 79 164,000 14.13 42,200 Spectroscopy SIMBAD [9][6]
LH 41-32 (in NGC 1910 of LMC) 78 160,000 13.086 48,200 Evolution SIMBAD [23][17]
Pismis 24-17 (in Pismis 24 of NGC 6357) 78 5,900 11.84 42,700 Spectroscopy SIMBAD [57][46]
VFTS 404 (in Tarantula Nebula of LMC) 78 164,000 14.14 44,700 Spectroscopy SIMBAD [9][6]
Westerhout 51-2 (in Westerhout 51) 77 20,000 13.68
(J band)
42,700 Evolution SIMBAD [10]
BAT99-68 (in BSDL 2505 of LMC) 76 165,000 14.13 45,000 Spectroscopy SIMBAD [5][17][lower-alpha 11]
HD 93632 (in Collinder 228 of Carina Nebula) 76 10,000 8.23 45,400 Evolution SIMBAD [22][13]
NGC 346-W3 (in NGC 346 of SMC) 76 200,000 12.8 52,500 Evolution SIMBAD [23][48]
VFTS 169 (in Tarantula Nebula of LMC) 76 164,000 14.437 47,300 Spectroscopy SIMBAD [9][17]
VFTS 440 (in Tarantula Nebula of LMC) 76 164,000 12.046 39,800 Spectroscopy SIMBAD [9][17]
AB1 (in DEM S10 of SMC) 75 197,000 15.238 79,000 Spectroscopy SIMBAD [58][48][lower-alpha 12]
WR 22 A (in Bochum 10 of Carina Nebula) 75 8,300 6.42
(combined)
44,700 Evolution SIMBAD [28][13][lower-alpha 13]
Pismis 24-1NE (in Pismis 24 of NGC 6357) 74 6,500 11 42,500 Binary SIMBAD [57][59]
VFTS 608 (in Tarantula Nebula of LMC) 74 164,000 14.22 42,200 Spectroscopy SIMBAD [9][6]
HSH95-31 (in Tarantula Nebula of LMC) 73 163,000 14.12 47,500 Evolution SIMBAD [20][6]
Mercer 30-3 (in Mercer 30 of Dragonfish Nebula) 73 40,000 12.62
(J band)
39,300 Evolution SIMBAD [42][lower-alpha 7]
Mercer 30-11 (in Mercer 30 of Dragonfish Nebula) 73 40,000 12.33
(J band)
36,800 Evolution SIMBAD [42][lower-alpha 7]
VFTS 566 (in Tarantula Nebula of LMC) 73 164,000 14.05 44,700 Spectroscopy SIMBAD [9][6]
LH 64-16 (in NGC 2001 of LMC) 72 160,000 13.666 50,900 Evolution SIMBAD [23][25]
NGC 2044-W35 (in NGC 2044 of LMC) 72 160,000 14.1 48,200 Evolution SIMBAD [23][17]
VFTS 216 (in Tarantula Nebula of LMC) 72 164,000 14.389 44,700 Spectroscopy SIMBAD [9][17]
ST2-1 (in NGC 2044 of LMC) 71 160,000 14.3 44,100 Evolution SIMBAD [23][47]
VFTS 3 (in Tarantula Nebula of LMC) 71 164,000 11.56 21,000 Spectroscopy SIMBAD [60][6]
Arches-F12 (WR 102af in Arches Cluster) 70 25,000 16.4
(J band)
36,900 Spectroscopy SIMBAD [30][31]
HD 15629 (in IC 1805 of Heart Nebula) 70 7,500 8.42 45,900 Spectroscopy SIMBAD [12][13]
HD 37974 (in N135 of LMC) 70 163,000 10.99 22,500 Spectroscopy SIMBAD [61][38][lower-alpha 14]
HD 93129 Ab (in Trumpler 14 of Carina Nebula) 70 7,500 7.31
(combined)
44,000 Trinary SIMBAD [34][62]
M33 X-7 B (in Triangulum Galaxy) 70 2,700,000 18.7 35,000 Binary SIMBAD [63][64]
Sk -69° 194 A (in NGC 2033 of LMC) 70 160,000 12.131
(combined)
45,000 Evolution SIMBAD [23][52][lower-alpha 5]
VFTS 125 (in Tarantula Nebula of LMC) 69.6 164,000 16.6 55,200 Spectroscopy SIMBAD [15][47]
HD 46150 (in NGC 2244 of Rosette Nebula) 69 5,200 6.73 44,000 Spectroscopy SIMBAD [16][13]
HD 229059 (in Berkeley 87) 69 3,000 8.7 26,300 Evolution SIMBAD [22][13]
ST2-3 (in NGC 2044 of LMC) 69 160,000 14.264 44,900 Evolution SIMBAD [23][17]
ST2-32 (in NGC 2044 of LMC) 69 160,000 13.903 45,400 Evolution SIMBAD [23][17]
W28-23 (in NGC 2033 of LMC) 69 160,000 13.702 51,300 Evolution SIMBAD [23][25]
HD 93403 A (in Trumpler 16 of Carina Nebula) 68.5 10,400 8.27
(combined)
39,300 Binary SIMBAD [65][38]
HD 93130 (in Collinder 228 of Carina Nebula) 68 10,000 8.04 39,900 Evolution SIMBAD [22][13]
HM 1-8 (in HM 1) 68 11,000 12.52 46,100 Evolution SIMBAD [22][46]
HSH95-47 (in Tarantula Nebula of LMC) 68 163,000 14.72 43,500 Evolution SIMBAD [20][6]
HSH95-48 (in Tarantula Nebula of LMC) 68 163,000 14.75 46,500 Evolution SIMBAD [20][44]
Westerhout 51-61 (in Westerhout 51) 68 20,000 18.16
(J band)
38,000 Evolution SIMBAD [10][36]
BAT99-93 (in Tarantula Nebula of LMC) 67 165,000 13.446 45,000 Spectroscopy SIMBAD [5][17]
Sk -69° 200 (in NGC 2033 of LMC) 67 160,000 11.18 26,300 Evolution SIMBAD [23][17]
Arches-F18 (in Arches Cluster) 66.9 25,000 16.7
(J band)
36,900 Spectroscopy SIMBAD [30][31]
Arches-F4 (WR 102al in Arches Cluster) 66.4 25,000 15.63
(J band)
36,800 Spectroscopy SIMBAD [30][31]
BAT99-59 A (in NGC 2020 of LMC) 66 165,000 13.186
(combined)
71,000 Spectroscopy SIMBAD [5][17][lower-alpha 5]
BAT99-104 (in Tarantula Nebula of LMC) 66 165,000 12.5 63,000 Spectroscopy SIMBAD [5][17]
HD 5980 B (in NGC 346 of SMC) 66 200,000 11.31
(combined)
45,000 Trinary SIMBAD [66][62]
HD 190429 A (near Barnard 146) 66 7,800 6.63
(combined)
46,000 Binary SIMBAD [67][13]
LH 31-1003 (in NGC 1858 of LMC) 66 160,000 13.186 41,900 Evolution SIMBAD [23][17]
LH 114-7 (in N70 of LMC) 66 160,000 13.66 50,000 Spectroscopy SIMBAD [16][17][lower-alpha 15]
Pismis 24-1SW (in Pismis 24 of NGC 6357) 66 6,500 11.1 40,000 Binary SIMBAD [57][59]
BAT99-126 (in NGC 2081 of LMC) 65 165,000 13.166 71,000 Spectroscopy SIMBAD [5][17]
HSH95-40 (in Tarantula Nebula of LMC) 65 163,000 14.56 47,500 Evolution SIMBAD [20][6]
HSH95-58 (in Tarantula Nebula of LMC) 65 163,000 14.8 47,500 Evolution SIMBAD [20][6]
HSH95-89 (in Tarantula Nebula of LMC) 65 163,000 14.76 44,000 Spectroscopy SIMBAD [44]
VFTS 63 (in Tarantula Nebula of LMC) 65 164,000 14.4 42,200 Spectroscopy SIMBAD [9][47]
VFTS 145 (in Tarantula Nebula of LMC) 65 164,000 14.3 39,800 Spectroscopy SIMBAD [9][6]
VFTS 518 (in Tarantula Nebula of LMC) 65 164,000 15.11 44,700 Spectroscopy SIMBAD [9][6]
Westerhout 49-8 (in Westerhout 49) 65 36,200 15.617
(J band)
40,700 Evolution SIMBAD [35][36]
BD+43° 3654 (Runaway star from Cygnus OB2) 64.6 5,400 10.06 40,400 Evolution SIMBAD [68][62]
BAT99-129 A (in DEM L294 of LMC) 64 165,000 14.701
(combined)
79,000 Spectroscopy SIMBAD [5][17][lower-alpha 16][lower-alpha 5]
HSH95-50 (in Tarantula Nebula of LMC) 64 163,000 14.65 47,000 Evolution SIMBAD [20][6]
Sk -69° 25 (in NGC 1748 of LMC) 64 160,000 11.886 43,600 Evolution SIMBAD [23][17]
Trumpler 27-23 (in Trumpler 27) 64 3,900 10.09 27,500 Evolution SIMBAD [22][38]
Westerhout 49-5 (in Westerhout 49) 64 36,200 15.623
(J band)
42,700 Evolution SIMBAD [35][36]
HD 46223 (in NGC 2244 of Rosette Nebula) 63 5,200 7.28 46,000 Spectroscopy SIMBAD [16][13]
HD 64568 (in NGC 2467 of Puppis OB2) 63 16,000 9.39 54,000 Spectroscopy SIMBAD [16][38]
HD 303308 (in Trumpler 16 of Carina Nebula) 63 9,200 8.17 51,300 Evolution SIMBAD [22][38]
HR 6187 A (in NGC 6193 of Ara OB1) 63 4,300 5.54
(combined)
46,500 Septenary SIMBAD [69][13]
LH 10-3058 (in NGC 1763 of LMC) 63 160,000 14.089 54,000 Spectroscopy SIMBAD [16][17]
ST5-71 (in NGC 2074 of LMC) 63 160,000 13.266 45,400 Evolution SIMBAD [23][17]
AB9 (in DEM S80 of SMC) 62 197,000 15.431 100,000 Spectroscopy SIMBAD [58][48][lower-alpha 17]
Brey 32 B (in NGC 1966 of LMC) 62 165,000 12.32
(combined)
43,600 Evolution SIMBAD [23][38]
HD 93160 (in Trumpler 14 of Carina Nebula) 62 8,000 7.6 42,700 Evolution SIMBAD [22][13]
HSH95-35 (in Tarantula Nebula of LMC) 62 163,000 14.43 47,500 Evolution SIMBAD [20][6]
LH 41-1017 (in NGC 1910 of LMC) 62 160,000 12.266 42,700 Evolution SIMBAD [23][17]
Mercer 30-6a A (WR 46-4 A in Mercer 30 of Dragonfish Nebula) 62 40,000 10.39
(J band)
29,900 Evolution SIMBAD [42][lower-alpha 7][lower-alpha 5]
ST4-18 (in NGC 2081 of LMC) 62 160,000 13.639 44,800 Evolution SIMBAD [23][17]
VFTS 664 (in Tarantula Nebula of LMC) 62 164,000 13.937 39,900 Spectroscopy SIMBAD [9][17]
HD 229196 (in Cygnus OB9) 61.6 5,000 8.59 40,900 Evolution SIMBAD [68][46]
AB8 B (in NGC 602 of SMC) 61 197,000 12.83
(combined)
45,000 Binary SIMBAD [66][70]
BAT99-79 A (in NGC 2044 of LMC) 61 165,000 13.486
(combined)
42,000 Spectroscopy SIMBAD [5][17][lower-alpha 5]
HD 5980 A (in NGC 346 of SMC) 61 200,000 11.31
(combined)
21,000–53,000 Trinary SIMBAD [66][62]
LH 41-18 (in NGC 1910 of LMC) 61 160,000 12.586 38,500 Evolution SIMBAD [23][17]
Mercer 30-9 A (in Mercer 30 of Dragonfish Nebula) 61 40,000 12.25
(J band)
34,500 Evolution SIMBAD [42][lower-alpha 7][lower-alpha 5]
ST5-25 (in NGC 2074 of LMC) 61 160,000 13.551 48,600 Evolution SIMBAD [23][25]
VFTS 422 (in Tarantula Nebula of LMC) 61 164,000 15.14 39,800 Spectroscopy SIMBAD [9][6]
WR 102hb (in Quintuplet cluster) 61 26,000 13.9
(J band)
25,100 Evolution SIMBAD [71][72]
Sk -67° 166 (in GKK-A144 of LMC) 60.68 160,000 12.22 41,800 Spectroscopy SIMBAD [51][17][lower-alpha 18]
Sk -67° 167 (in GKK-A144 of LMC) 60.68 160,000 12.586 41,800 Spectroscopy SIMBAD [51][17][lower-alpha 18]
Sk -71° 46 (in BSDL 2242 of LMC) 60.68 160,000 13.241 41,800 Spectroscopy SIMBAD [51][17][lower-alpha 19]
Brey 10 (in NGC 1770 of LMC) 60 165,000 12.69 117,000 Evolution SIMBAD [23][38]
Brey 94 A (in NGC 2081 of LMC) 60 165,000 12.996
(combined)
83,000 Evolution SIMBAD [23][17][lower-alpha 5]
Brey 95a A (in NGC 2081 of LMC) 60 165,000 12.2
(combined)
83,000 Evolution SIMBAD [23][73][lower-alpha 5]
HSH95-55 (in Tarantula Nebula of LMC) 60 163,000 14.74 47,500 Evolution SIMBAD [20][6]
Mercer 30-7 A (WR 46-5 A in Mercer 30 of Dragonfish Nebula) 60 40,000 11.516
(J band)
41,400 Evolution SIMBAD [42][lower-alpha 7][lower-alpha 5]
R134 (in Tarantula Nebula of LMC) 60 164,000 12.75 39,800 Spectroscopy SIMBAD [9][6]
R142 (in Tarantula Nebula of LMC) 60 164,000 11.82 18,000 Spectroscopy SIMBAD [60][6]
R143 (in Tarantula Nebula of LMC) 60 160,000 12.014 18,000–36,000 Evolution SIMBAD [49][17]
Sk -69° 142a (in NGC 1983 of LMC) 60 160,000 11.093 34,000 Evolution SIMBAD [49][52]
Sk -69° 259 (in NGC 2081 of LMC) 60 160,000 11.93 23,000 Evolution SIMBAD [23][38]
Var 83 (in Triangulum Galaxy) 60 3,000,000 16.027 18,000–37,000 Evolution SIMBAD [74][75]
VFTS 430 (in Tarantula Nebula of LMC) 60 164,000 15.11 24,500 Spectroscopy SIMBAD [60][6]


A few notable large stars with masses less than 60 M are shown in the table below for the purpose of comparison, ending with the Sun, which is very close, but would otherwise be too small to be included in the list. At present, all the listed stars are naked-eye visible and relatively nearby.

Star name Mass
(M, Sun = 1)
Approx. distance
from earth (ly)
Apparent
visible magnitude
Effective
temperature (K)
Estimation
method
Link Reference
ζ Puppis (Naos in Vela R2 of Vela Molecular Ridge) 56.1 1,080 2.25 40,000 Spectroscopy SIMBAD [67][13][lower-alpha 20]
λ Cephei (Runaway star from Cepheus OB3) 51.4 3,100 5.05 36,000 Spectroscopy SIMBAD [67][13]
τ Canis Majoris Aa (in NGC 2362) 50 5,120 4.89 32,000 Evolution SIMBAD [76][13]
θ Muscae Ab (in Centaurus OB1) 44 7,400 5.53
(combined)
33,000 Evolution SIMBAD [77][13]
ε Orionis (Alnilam in Orion OB1 of Orion complex) 40 2,000 1.69 27,500 Evolution SIMBAD [78][13]
θ2 Orionis A (in Orion OB1 of Orion complex) 39 1,500 5.02 34,900 Evolution SIMBAD [79][80]
α Camelopardalis (Runaway star from NGC 1502) 37.6 6,000 4.29 29,000 Evolution SIMBAD [81][13]
P Cygni (in IC 4996 of Cygnus OB1) 37 5,100 4.82 18,700 Spectroscopy SIMBAD [82][13][lower-alpha 21]
ζ1 Scorpii (in NGC 6231 of Scorpius OB1) 36 8,210 4.705 17,200 Spectroscopy SIMBAD [32][83]
ζ Orionis Aa (Alnitak in Orion OB1 of Orion complex) 33 1,260 2.08 29,500 Evolution SIMBAD [84]
θ1 Orionis C1 (in Trapezium Cluster of Orion complex) 33 1,340 5.13
(combined)
39,000 Evolution SIMBAD [85][13]
κ Cassiopeiae (in Cassiopeia OB14) 33 4,000 4.16 23,500 Evolution SIMBAD [86][13]
μ Normae (in NGC 6169) 33 3,260 4.91 28,000 Spectroscopy SIMBAD [87][13]
η Carinae B (in Trumpler 16 of Carina Nebula) 30 7,500 4.3
(combined)
37,200 Binary SIMBAD [88][41]
γ2 Velorum B (in Vela OB2) 28.5 1,230 1.83
(combined)
35,000 Evolution SIMBAD [89][13]
λ Orionis A (Meissa in Collinder 69 of Orion complex) 27.9 1,100 3.54 37,700 Spectroscopy SIMBAD [87][90]
ξ Persei (Menkib in California Nebula of Perseus OB2) 26.1 1,200 4.04 35,000 Evolution SIMBAD [81][13]
WR 79a (in NGC 6231 of Scorpius OB1) 24.4 5,600 5.77 35,000 Spectroscopy SIMBAD [87][13]
δ Orionis Aa1 (Mintaka in Orion OB1 of Orion complex) 24 1,200 2.5
(combined)
29,500 Evolution SIMBAD [91][92]
ι Orionis Aa1 (Hatysa in NGC 1980 of Orion complex) 23.1 1,340 2.77
(combined)
32,500 Evolution SIMBAD
κ Crucis (in Jewel Box Cluster of Centaurus OB1) 23 7,500 5.98 16,300 Evolution SIMBAD [93][62]
WR 78 (in NGC 6231 of Scorpius OB1) 22 4,100 6.48 50,100 Spectroscopy SIMBAD [28][29]
ο2 Canis Majoris (in Collinder 121) 21.4 2,800 3.043 15,500 Evolution SIMBAD [87][13]
β Orionis A (Rigel in Orion OB1 of Orion complex) 21 860 0.13 12,100 Evolution SIMBAD [94][13]
η Canis Majoris (Aludra in Collinder 121) 21 2,000 2.45 15,000 Evolution SIMBAD [86][13]
ζ Ophiuchi (in Upper Scorpius subgroup of Scorpius OB2) 20.2 370 2.569 34,000 Evolution SIMBAD [81][13]
υ Orionis (in Orion OB1 of Orion complex) 20 2,900 4.618 33,400 Evolution SIMBAD [95][96]
σ Orionis Aa (in Orion OB1 of Orion complex) 18 1,260 4.07
(combined)
35,000 Spectroscopy SIMBAD [97][98]
μ Columbae (Runaway star from Trapezium Cluster) 16 1,300 5.18 33,000 Spectroscopy SIMBAD [99][13]
κ Orionis (Saiph in Orion OB1 of Orion complex) 15.5 650 2.09 26,500 Evolution SIMBAD [100][13]
σ Cygni (in Cygnus OB4) 15 3,260 4.233 10,800 Evolution SIMBAD [101][102]
θ Carinae A (in IC 2602 of Scorpius OB2) 14.9 460 2.76
(combined)
31,000 Evolution SIMBAD [87][103]
θ2 Orionis B (in Orion OB1 of Orion complex) 14.8 1,500 6.38 29,300 Spectroscopy SIMBAD [104]
ζ Persei (in Perseus OB2) 14.5 750 2.86 20,800 Evolution SIMBAD [100][13]
σ Orionis B (in Orion OB1 of Orion complex) 14 1,260 4.07
(combined)
31,000 Spectroscopy SIMBAD [97][98]
β Canis Majoris (Mirzam in Local Bubble of Scorpius OB2) 13.5 490 1.985 23,200 Evolution SIMBAD [105][106]
ε Persei A (in α Persei Cluster) 13.5 640 2.88
(combined)
26,500 Evolution SIMBAD
ι Orionis Aa2 (in NGC 1980 of Orion complex) 13.1 1,340 2.77
(combined)
27,000 Evolution SIMBAD [107][108]
δ Scorpii A (Dschubba in Upper Scorpius subgroup of Scorpius OB2) 13 440 2.307
(combined)
27,400 Evolution SIMBAD [109][110]
σ Orionis Ab (in Orion OB1 of Orion complex) 13 1,260 4.07
(combined)
29,000 Spectroscopy SIMBAD [97][98]
θ Muscae Aa (WR 48 in Centaurus OB1) 11.5 7,400 5.53
(combined)
83,000 Spectroscopy SIMBAD [111][13]
γ2 Velorum A (WR 11 in Vela OB2) 9 1,230 1.83
(combined)
57,000 Spectroscopy SIMBAD [89][13]
ρ Ophiuchi A (in ρ Ophiuchi cloud complex of Scorpius OB2) 8.7 360 4.63
(combined)
22,000 Evolution SIMBAD [87][13]
γ Orionis (Bellatrix in Bellatrix Cluster of Orion complex) 7.7 250 1.64 21,800 Evolution SIMBAD [112][13]
α Scorpii B (in Loop I Bubble of Scorpius OB2) 7.2 550 5.5 18,500 Evolution SIMBAD [113][90]
λ Tauri A (in Pisces-Eridanus stellar stream) 7.18 480 3.47
(combined)
18,700 Evolution SIMBAD [114][115]
δ Persei (in α Persei Cluster) 7 520 3.01 14,900 Evolution SIMBAD [87][103]
ψ Persei (in α Persei Cluster) 6.2 580 4.31 16,000 Evolution SIMBAD [87][13]
α Pavonis Aa (Peacock in Tucana-Horologium association) 5.91 180 1.94 17,700 Evolution SIMBAD [116][108]
η Tauri A (Alcyone in Pleiades) 5.9 440 2.87
(combined)
12,300 Evolution SIMBAD [117][13]
γ Canis Majoris (Muliphein in Collinder 121) 5.6 440 4.1 13,600 Evolution SIMBAD [87][118]
ο Velorum (in IC 2391 of Scorpius OB2) 5.5 490 3.6 16,200 Evolution SIMBAD [119][103]
ο Aquarii (in Pisces-Eridanus stellar stream) 4.2 440 4.71 13,500 Evolution SIMBAD [120][121]
ν Fornacis (in Pisces-Eridanus stellar stream) 3.65 370 4.69 13,400 Evolution SIMBAD [122][13]
φ Eridani (in Tucana-Horologium association) 3.55 150 3.55 13,700 Evolution SIMBAD [116][123]
η Chamaeleontis (in η Chamaeleontis moving group of Scorpius OB2) 3.2 310 5.453 12,500 Evolution SIMBAD [124][62]
ε Chamaeleontis (in ε Chamaeleontis moving group of Scorpius OB2) 2.87 360 4.91 10,900 Evolution SIMBAD [125][103]
τ1 Aquarii (in Pisces-Eridanus stellar stream) 2.68 320 5.66 10,600 Evolution SIMBAD [126][127]
ε Hydri (in Tucana-Horologium association) 2.64 150 4.12 11,000 Evolution SIMBAD [126][128]
β1 Tucanae (in Tucana-Horologium association) 2.5 140 4.37 10,600 Evolution SIMBAD [87][90]
Sun (in Solar System) 1 0.0000158 −26.744 5,772 Standard IAU [129][130][131]
  1. For some methods, different determinations of chemical composition lead to different estimates of mass.
  2. For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion.
  3. The superwinds from massive stars are similar to the superwinds generated by asymptotic giant branch (AGB) stars – red giants – that form planetary nebulae. These stars' later remnants become the (technically non-stellar) white dwarf cores of planetary nebulae.
  4. For examples of stellar debris see hypernovae and supernova remnant.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 This is a binary system but the secondary is much less massive than the primary.
  6. This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Mercer 30 is an open cluster in Dragonfish Nebula.
  8. N64 is an emission nebula in Large Magellanic Cloud.
  9. BSDL 1830 is a star cluster in Large Magellanic Cloud.
  10. BSDL 2527 is a star cluster in Large Magellanic Cloud.
  11. BSDL 2505 is a star cluster in Large Magellanic Cloud.
  12. DEM S10 is a H II region in Small Magellanic Cloud.
  13. Bochum 10 is an open cluster in Carina Nebula.
  14. N135 is an emission nebula in Large Magellanic Cloud.
  15. N70 is an emission nebula in Large Magellanic Cloud.
  16. DEM L294 is a H II region in Large Magellanic Cloud.
  17. DEM S80 is a H II region in Small Magellanic Cloud.
  18. 18.0 18.1 GKK-A144 is a stellar association in Large Magellanic Cloud.
  19. BSDL 2242 is a star cluster in Large Magellanic Cloud.
  20. Vela R2 is a OB association in Vela Molecular Ridge.
  21. IC 4996 is an open cluster in Cygnus OB1.

Black holes

Main pages: Astronomy:Black hole, Astronomy:List of black holes, and Astronomy:List of most massive black holes

Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores. Some black holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of the most massive black holes.

See also

References

  1. van Marle, A.J.; Owocki, S.P.; Shaviv, N.J. (March 2008). "Continuum-driven winds from super-Eddington stars: A tale of two limits". First Stars III: First Stars III Conference. AIP Conference Proceedings. 990. Santa Fe, NM. pp. 250–253. doi:10.1063/1.2905555. Bibcode2008AIPC..990..250V. 
  2. Maeder, A.; Georgy, C.; Meynet, G.; Ekström, S. (March 2012). "On the Eddington limit and Wolf-Rayet stars". Astronomy & Astrophysics 539: A110. doi:10.1051/0004-6361/201118328. ISSN 0004-6361. Bibcode2012A&A...539A.110M. http://www.aanda.org/10.1051/0004-6361/201118328. 
  3. Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung (21 October 2012). "The emergence of super-canonical stars in R136-type starburst clusters: Super-canonical stars in R136". Monthly Notices of the Royal Astronomical Society 426 (2): 1416–1426. doi:10.1111/j.1365-2966.2012.21672.x. ISSN 0035-8711. Bibcode2012MNRAS.426.1416B. 
  4. Ulmer, Andrew; Fitzpatrick, Edward L. (September 1998). "Revisiting the modified Eddington limit for massive stars" (in en). The Astrophysical Journal 504 (1): 200–206. doi:10.1086/306048. ISSN 0004-637X. Bibcode1998ApJ...504..200U. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G. et al. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class". Astronomy & Astrophysics 565: A27. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. Bibcode2014A&A...565A..27H. 
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 Doran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.; Walborn, N.R. et al. (October 2013). "The VLT-FLAMES Tarantula Survey: XI. A census of the hot luminous stars and their feedback in 30 Doradus". Astronomy & Astrophysics 558: A134. doi:10.1051/0004-6361/201321824. ISSN 0004-6361. Bibcode2013A&A...558A.134D. 
  7. 7.0 7.1 7.2 Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; de Koter, Alex; Gräfener, Götz et al. (2020-12-01). "The R136 star cluster dissected with Hubble Space Telescope/STIS - II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society 499 (2): 1918–1936. doi:10.1093/mnras/staa2801. ISSN 0035-8711. Bibcode2020MNRAS.499.1918B. https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1918B. 
  8. 8.0 8.1 8.2 Kalari, Venu M.; Horch, Elliott P.; Salinas, Ricardo; Vink, Jorick S.; Andersen, Morten; Bestenlehner, Joachim M.; Rubio, Monica (2022-07-26). "Resolving the Core of R136 in the Optical". The Astrophysical Journal 935 (2): 162. doi:10.3847/1538-4357/ac8424. Bibcode2022ApJ...935..162K. 
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29 9.30 9.31 Bestenlehner, J.M.; Gräfener, G.; Vink, J.S.; Najarro, F.; de Koter, A.; Sana, H. et al. (October 2014). "The VLT-FLAMES Tarantula Survey: XVII. Physical and wind properties of massive stars at the top of the main sequence". Astronomy & Astrophysics 570: A38. doi:10.1051/0004-6361/201423643. ISSN 0004-6361. Bibcode2014A&A...570A..38B. 
  10. 10.0 10.1 10.2 10.3 10.4 Bik, A.; Henning, Th.; Wu, S.-W.; Zhang, M.; Brandner, W.; Pasquali, A.; Stolte, A. (April 2019). "Near-infrared spectroscopy of the massive stellar population of W51: evidence for multi-seeded star formation". Astronomy & Astrophysics 624: A63. doi:10.1051/0004-6361/201935061. ISSN 0004-6361. Bibcode2019A&A...624A..63B. 
  11. 11.0 11.1 Bagnulo, S.; Wade, G.A.; Nazé, Y.; Grunhut, J.H.; Shultz, M.E.; Asher, D.J. et al. (March 2020). "A search for strong magnetic fields in massive and very massive stars in the Magellanic Clouds". Astronomy & Astrophysics 635: A163. doi:10.1051/0004-6361/201937098. ISSN 0004-6361. Bibcode2020A&A...635A.163B. 
  12. 12.0 12.1 12.2 De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (September 2006). "Early-type stars in the young open cluster IC 1805: II. The probably single stars HD 15570 and HD 15629, and the massive binary/triple system HD 15558". Astronomy & Astrophysics 456 (3): 1121–1130. doi:10.1051/0004-6361:20065300. ISSN 0004-6361. Bibcode2006A&A...456.1121D. 
  13. 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 13.26 13.27 13.28 13.29 13.30 13.31 13.32 13.33 13.34 13.35 13.36 13.37 13.38 13.39 13.40 13.41 13.42 13.43 Ducati, J.R. (2002). VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system (Report). Collection of Electronic Catalogues. 2237. CDS/ADC. 
  14. 14.0 14.1 Tehrani, Katie A.; Crowther, Paul A.; Bestenlehner, Joachim M.; Littlefair, Stuart P.; Pollock, A.M.T.; Parker, Richard J.; Schnurr, Olivier (1 April 2019). "Weighing Melnick 34: the most massive binary system known". Monthly Notices of the Royal Astronomical Society 484 (2): 2692–2710. doi:10.1093/mnras/stz147. ISSN 0035-8711. Bibcode2019MNRAS.484.2692T. 
  15. 15.0 15.1 15.2 15.3 Schneider, F.R.N.; Sana, H.; Evans, C.J.; Bestenlehner, J.M.; Castro, N.; Fossati, L. et al. (5 January 2018). "An excess of massive stars in the local 30 Doradus starburst" (in en). Science 359 (6371): 69–71. doi:10.1126/science.aan0106. ISSN 0036-8075. PMID 29302009. Bibcode2018Sci...359...69S. 
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 Walborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J. et al. (May 2002). "A New Spectral Classification System for the Earliest O Stars: Definition of Type O2". The Astronomical Journal 123 (5): 2754–2771. doi:10.1086/339831. ISSN 0004-6256. Bibcode2002AJ....123.2754W. http://sedici.unlp.edu.ar/handle/10915/84631. 
  17. 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24 17.25 17.26 17.27 17.28 17.29 17.30 17.31 17.32 17.33 17.34 17.35 17.36 17.37 17.38 17.39 17.40 Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J. et al. (1 October 2009). "Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud". The Astronomical Journal 138 (4): 1003–1021. doi:10.1088/0004-6256/138/4/1003. ISSN 0004-6256. Bibcode2009AJ....138.1003B. 
  18. 18.0 18.1 18.2 18.3 Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu (21 October 2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit" (in en). Monthly Notices of the Royal Astronomical Society 408 (2): 731–751. doi:10.1111/j.1365-2966.2010.17167.x. ISSN 0035-8711. Bibcode2010MNRAS.408..731C. 
  19. 19.0 19.1 19.2 19.3 19.4 19.5 Melena, Nicholas W.; Massey, Philip; Morrell, Nidia I.; Zangari, Amanda M. (1 March 2008). "The massive star content of NGC 3603". The Astronomical Journal 135 (3): 878–891. doi:10.1088/0004-6256/135/3/878. ISSN 0004-6256. Bibcode2008AJ....135..878M. 
  20. 20.00 20.01 20.02 20.03 20.04 20.05 20.06 20.07 20.08 20.09 20.10 20.11 20.12 20.13 20.14 20.15 Brands, S.; de Koter, A.; Bestenlehner, J.; Crowther, P.; Sundqvist, J.; Puls, J. et al. (7 April 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS. III. The most massive stars and their clumped winds". Astronomy & Astrophysics 663: A36. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. Bibcode2022A&A...663A..36B. https://www.aanda.org/10.1051/0004-6361/202142742. 
  21. Roman-Lopes, A.; Franco, G.A.P.; Sanmartim, D. (26 May 2016). "SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603". The Astrophysical Journal 823 (2): 96. doi:10.3847/0004-637X/823/2/96. ISSN 1538-4357. Bibcode2016ApJ...823...96R. 
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 Cite error: Invalid <ref> tag; no text was provided for refs named Massey2001
  23. 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 23.12 23.13 23.14 23.15 23.16 23.17 23.18 23.19 23.20 23.21 23.22 23.23 23.24 23.25 23.26 23.27 23.28 23.29 Cite error: Invalid <ref> tag; no text was provided for refs named Massey2000
  24. Fabricius, C.; Høg, E.; Makarov, V.V.; Mason, B.D.; Wycoff, G.L.; Urban, S.E. (March 2002). "The Tycho double star catalogue". Astronomy & Astrophysics 384 (1): 180–189. doi:10.1051/0004-6361:20011822. ISSN 0004-6361. Bibcode2002A&A...384..180F. 
  25. 25.0 25.1 25.2 25.3 Zaritsky, Dennis; Harris, Jason; Thompson, Ian B.; Grebel, Eva K. (October 2004). "The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map" (in en). The Astronomical Journal 128 (4): 1606–1614. doi:10.1086/423910. ISSN 0004-6256. Bibcode2004AJ....128.1606Z. 
  26. Drew, J.E.; Herrero, A.; Mohr-Smith, M.; Monguió, M.; Wright, N.J.; Kupfer, T.; Napiwotzki, R. (21 October 2018). "Massive stars in the hinterland of the young cluster, Westerlund 2". Monthly Notices of the Royal Astronomical Society 480 (2): 2109–2124. doi:10.1093/mnras/sty1905. ISSN 0035-8711. Bibcode2018MNRAS.480.2109D. 
  27. Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. (25 March 2013). "The distance to the massive galactic cluster Westerlund 2 from a spectroscopic and HST photometric study". The Astronomical Journal 145 (5): 125. doi:10.1088/0004-6256/145/5/125. ISSN 0004-6256. Bibcode2013AJ....145..125V. 
  28. 28.0 28.1 28.2 28.3 28.4 Hamann, W.-R.; Gräfener, G.; Liermann, A.; Hainich, R.; Sander, A.a.C.; Shenar, T. et al. (1 May 2019). "The galactic WN stars revisited - impact of Gaia distances on fundamental stellar parameters" (in en). Astronomy & Astrophysics 625: A57. doi:10.1051/0004-6361/201834850. ISSN 0004-6361. Bibcode2019A&A...625A..57H. 
  29. 29.0 29.1 Samus, N.N.; Kazarovets, E.V.; Durlevich, O.V.; Kireeva, N.N.; Pastukhova, E.N. (January 2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-Line Data Catalog: B/GCVS. Originally Published in: 2017ARep...61...80S; 2017AZh....94...87S 1. Bibcode2009yCat....102025S. 
  30. 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 Gräfener, G.; Vink, J.S.; de Koter, A.; Langer, N. (November 2011). "The Eddington factor as the key to understand the winds of the most massive stars: Evidence for a Γ-dependence of Wolf-Rayet type mass loss". Astronomy & Astrophysics 535: A56. doi:10.1051/0004-6361/201116701. ISSN 0004-6361. Bibcode2011A&A...535A..56G. 
  31. 31.0 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Figer, Donald F.; Najarro, Francisco; Gilmore, Diane; Morris, Mark; Kim, Sungsoo S.; Serabyn, Eugene et al. (10 December 2002). "Massive Stars in the Arches Cluster" (in en). The Astrophysical Journal 581 (1): 258–275. doi:10.1086/344154. ISSN 0004-637X. Bibcode2002ApJ...581..258F. 
  32. 32.0 32.1 Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics 541: A145. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. Bibcode2012A&A...541A.145C. 
  33. Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits (February 2017). "Variability survey of brightest stars in selected OB associations". Astronomy & Astrophysics 598: A108. doi:10.1051/0004-6361/201629395. ISSN 0004-6361. Bibcode2017A&A...598A.108L. 
  34. 34.0 34.1 Nelan, Edmund P.; Walborn, Nolan R.; Wallace, Debra J.; Moffat, Anthony F.J.; Makidon, Russell B.; Gies, Douglas R.; Panagia, Nino (July 2004). "Resolving OB systems in the Carina nebula with the Hubble Space Telescope Fine Guidance Sensor" (in en). The Astronomical Journal 128 (1): 323–329. doi:10.1086/420716. ISSN 0004-6256. Bibcode2004AJ....128..323N. 
  35. 35.0 35.1 35.2 35.3 Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea (May 2016). "The massive stellar population of W49: A spectroscopic survey". Astronomy & Astrophysics 589: A16. doi:10.1051/0004-6361/201527823. ISSN 0004-6361. Bibcode2016A&A...589A..16W. 
  36. 36.0 36.1 36.2 36.3 36.4 36.5 Cutri, Roc M.; Skrutskie, Michael F.; van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas et al. (2003). VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) (Report). Collection of Electronic Catalogues. 2246. CDS/ADC. p. II/246. http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/246. 
  37. Tramper, F.; Sana, H.; Fitzsimons, N.E.; de Koter, A.; Kaper, L.; Mahy, L.; Moffat, A. (11 January 2016). "The mass of the very massive binary WR21a" (in en). Monthly Notices of the Royal Astronomical Society 455 (2): 1275–1281. doi:10.1093/mnras/stv2373. ISSN 0035-8711. Bibcode2016MNRAS.455.1275T. 
  38. 38.00 38.01 38.02 38.03 38.04 38.05 38.06 38.07 38.08 38.09 38.10 38.11 38.12 38.13 Cite error: Invalid <ref> tag; no text was provided for refs named zacharias
  39. Oskinova, L. M.; Steinke, M.; Hamann, W.-R.; Sander, A.; Todt, H.; Liermann, A. (21 December 2013). "One of the most massive stars in the Galaxy may have formed in isolation" (in en). Monthly Notices of the Royal Astronomical Society 436 (4): 3357–3365. doi:10.1093/mnras/stt1817. ISSN 0035-8711. Bibcode2013MNRAS.436.3357O. 
  40. Clementel, N.; Madura, T.I.; Kruip, C.J.H.; Paardekooper, J.-P.; Gull, T.R. (1 March 2015). "3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron". Monthly Notices of the Royal Astronomical Society 447 (3): 2445–2458. doi:10.1093/mnras/stu2614. ISSN 0035-8711. Bibcode2015MNRAS.447.2445C. 
  41. 41.0 41.1 Hamaguchi, Kenji; Corcoran, Michael F.; Pittard, Julian M.; Sharma, Neetika; Takahashi, Hiromitsu; Russell, Christopher M.P. et al. (September 2018). "Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae". Nature Astronomy 2 (9): 731–736. doi:10.1038/s41550-018-0505-1. ISSN 2397-3366. Bibcode2018NatAs...2..731H. 
  42. 42.0 42.1 42.2 42.3 42.4 42.5 de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M.M.; Trombley, C. et al. (May 2016). "Probing the Dragonfish star-forming complex: The ionizing population of the young massive cluster Mercer 30". Astronomy & Astrophysics 589: A69. doi:10.1051/0004-6361/201528004. ISSN 0004-6361. Bibcode2016A&A...589A..69D. 
  43. Rivero González, J.G.; Puls, J.; Najarro, F.; Brott, I. (January 2012). "Nitrogen line spectroscopy of O-stars: II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud". Astronomy & Astrophysics 537: A79. doi:10.1051/0004-6361/201117790. ISSN 0004-6361. Bibcode2012A&A...537A..79R. 
  44. 44.0 44.1 44.2 Crowther, Paul A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Apellániz, J. Maíz; Schneider, F.R.N.; Walborn, N.R. et al. (1 May 2016). "The R136 star cluster dissected with Hubble Space Telescope / STIS. I. Far-ultraviolet spectroscopic census and the origin of He{{supII}} λ1640 in young star clusters" (in en). Monthly Notices of the Royal Astronomical Society 458 (1): 624–659. doi:10.1093/mnras/stw273. ISSN 0035-8711. Bibcode2016MNRAS.458..624C. 
  45. 45.0 45.1 Sana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L. et al. (15 March 2013). "R144 revealed as a double-lined spectroscopic binary" (in en). Monthly Notices of the Royal Astronomical Society: Letters 432 (1): L26–L30. doi:10.1093/mnrasl/slt029. ISSN 1745-3933. Bibcode2013MNRAS.432L..26S. 
  46. 46.0 46.1 46.2 46.3 Reed, B. Cameron (May 2003). "Catalog of Galactic OB Stars" (in en). The Astronomical Journal 125 (5): 2531–2533. doi:10.1086/374771. ISSN 0004-6256. Bibcode2003AJ....125.2531R. 
  47. 47.0 47.1 47.2 47.3 47.4 Schild, H.; Testor, G. (March 1992). "Spectral types and UBV magnitudes of stars in the 30 Doradus complex". Astronomy and Astrophysics Supplement Series 92: 729–748. ISSN 0365-0138. Bibcode1992A&AS...92..729S. 
  48. 48.0 48.1 48.2 48.3 Bonanos, A.Z.; Lennon, D.J.; Köhlinger, F.; van Loon, J.Th.; Massa, D. L.; Sewilo, M. et al. (1 August 2010). "Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud". The Astronomical Journal 140 (2): 416–429. doi:10.1088/0004-6256/140/2/416. ISSN 0004-6256. Bibcode2010AJ....140..416B. 
  49. 49.0 49.1 49.2 Smith, Nathan; Tombleson, Ryan (11 February 2015). "Luminous blue variables are antisocial: their isolation implies that they are kicked mass gainers in binary evolution". Monthly Notices of the Royal Astronomical Society 447 (1): 598–617. doi:10.1093/mnras/stu2430. ISSN 1365-2966. Bibcode2015MNRAS.447..598S. 
  50. Evans, C.J.; Lennon, D.J.; Smartt, S. J.; Trundle, C. (September 2006). "The VLT-FLAMES survey of massive stars: observations centered on the Magellanic Cloud clusters NGC 330, NGC 346, NGC 2004, and the N11 region". Astronomy & Astrophysics 456 (2): 623–638. doi:10.1051/0004-6361:20064988. ISSN 0004-6361. Bibcode2006A&A...456..623E. 
  51. 51.0 51.1 51.2 51.3 51.4 Massa, D.; Fullerton, A. W.; Prinja, R. K. (September 2017). "Mass-loss rates from mid-infrared excesses in LMC and SMC O stars" (in en). Monthly Notices of the Royal Astronomical Society 470 (3): 3765–3774. doi:10.1093/mnras/stx1443. ISSN 0035-8711. Bibcode2017MNRAS.470.3765M. 
  52. 52.0 52.1 52.2 Ulaczyk, K.; Szymański, M.K.; Udalski, A.; Kubiak, M.; Pietrzyński, G.; Soszyński, I. et al. (1 June 2013). "Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud". Acta Astronomica 63 (2): 159–179. ISSN 0001-5237. Bibcode2013AcA....63..159U. 
  53. Weidner, C.; Vink, J.S. (December 2010). "The masses, and the mass discrepancy of O-type stars". Astronomy & Astrophysics 524: A98. doi:10.1051/0004-6361/201014491. ISSN 0004-6361. Bibcode2010A&A...524A..98W. 
  54. Bestenlehner, Joachim M.; Crowther, Paul A.; Broos, Patrick S.; Pollock, Andrew M T.; Townsley, Leisa K. (2022). "Melnick 33Na: A very massive colliding-wind binary system in 30 Doradus". Monthly Notices of the Royal Astronomical Society 510 (4): 6133–6149. doi:10.1093/mnras/stab3521. Bibcode2022MNRAS.510.6133B. 
  55. Castro, N.; Crowther, P. A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S. et al. (2018). "Mapping the core of the Tarantula Nebula with VLT-MUSE. I. Spectral and nebular content around R136". Astronomy & Astrophysics 614: 12. doi:10.1051/0004-6361/201732084. A147. Bibcode2018A&A...614A.147C. 
  56. 56.0 56.1 Rauw, G.; Crowther, P.A.; de Becker, M.; Gosset, E.; Nazé, Y.; Sana, H. et al. (March 2005). "The spectrum of the very massive binary system WR 20a (WN6ha + WN6ha): Fundamental parameters and wind interactions". Astronomy & Astrophysics 432 (3): 985–998. doi:10.1051/0004-6361:20042136. ISSN 0004-6361. Bibcode2005A&A...432..985R. 
  57. 57.0 57.1 57.2 Fang, M.; van Boekel, R.; King, R. R.; Henning, Th.; Bouwman, J.; Doi, Y. et al. (March 2012). "Star formation and disk properties in Pismis 24". Astronomy & Astrophysics 539: A119. doi:10.1051/0004-6361/201015914. ISSN 0004-6361. Bibcode2012A&A...539A.119F. 
  58. 58.0 58.1 Hainich, R.; Pasemann, D.; Todt, H.; Shenar, T.; Sander, A.; Hamann, W. -R (2015). "Wolf-Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars". Astronomy & Astrophysics 581 (21): 30. doi:10.1051/0004-6361/201526241. Bibcode2015A&A...581A..21H. 
  59. 59.0 59.1 Skiff, B. A. (October 2014). "VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009- )". VizieR On-Line Data Catalog: B/Mk. Originally Published in: Lowell Observatory (October 2014) 1. Bibcode2014yCat....1.2023S. 
  60. 60.0 60.1 60.2 McEvoy, C.M.; Dufton, P.L.; Evans, C.J.; Kalari, V.M.; Markova, N.; Simón-Díaz, S. et al. (March 2015). "The VLT-FLAMES Tarantula Survey: XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence⋆". Astronomy & Astrophysics 575: A70. doi:10.1051/0004-6361/201425202. ISSN 0004-6361. Bibcode2015A&A...575A..70M. 
  61. Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud" (in en). The Astrophysical Journal 638 (1): L29–L32. doi:10.1086/500804. ISSN 0004-637X. Bibcode2006ApJ...638L..29K. 
  62. 62.0 62.1 62.2 62.3 62.4 62.5 Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G. et al. (March 2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy & Astrophysics 355: L27–L30. ISSN 0004-6361. Bibcode2000A&A...355L..27H. 
  63. Orosz, Jerome A.; McClintock, Jeffrey E.; Narayan, Ramesh; Bailyn, Charles D.; Hartman, Joel D.; Macri, Lucas et al. (October 2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33" (in en). Nature 449 (7164): 872–875. doi:10.1038/nature06218. ISSN 0028-0836. PMID 17943124. Bibcode2007Natur.449..872O. 
  64. Grimm, H.-J.; McDowell, J.; Zezas, A.; Kim, D.-W.; Fabbiano, G. (December 2005). "The X-Ray Binary Population in M33. I. Source List and Luminosity Function" (in en). The Astrophysical Journal Supplement Series 161 (2): 271–303. doi:10.1086/468185. ISSN 0067-0049. Bibcode2005ApJS..161..271G. 
  65. Rauw, G.; Sana, H.; Gosset, E.; Vreux, J.-M.; Jehin, E.; Parmentier, G. (August 2000). "A new orbital solution for the massive binary system HD 93403". Astronomy & Astrophysics 360: 1003–1010. ISSN 0004-6361. Bibcode2000A&A...360.1003R. 
  66. 66.0 66.1 66.2 Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A.F.J. et al. (July 2016). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics 591: A22. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. Bibcode2016A&A...591A..22S. 
  67. 67.0 67.1 67.2 Bouret, J.-C.; Hillier, D.J.; Lanz, T.; Fullerton, A.W. (2012). "Properties of galactic early-type O-supergiants: A combined FUV-UV and optical analysis". Astronomy & Astrophysics 544: A67. doi:10.1051/0004-6361/201118594. Bibcode2012A&A...544A..67B. 
  68. 68.0 68.1 Comerón, F.; Pasquali, A. (July 2012). "New members of the massive stellar population in Cygnus". Astronomy & Astrophysics 543: A101. doi:10.1051/0004-6361/201219022. ISSN 0004-6361. Bibcode2012A&A...543A.101C. 
  69. Krtička, J.; Kubát, J.; Krtičková, I. (July 2015). "X-ray irradiation of the winds in binaries with massive components". Astronomy & Astrophysics 579: A111. doi:10.1051/0004-6361/201525637. ISSN 0004-6361. Bibcode2015A&A...579A.111K. 
  70. Massey, Philip (July 2002). "A UBVR CCD Survey of the Magellanic Clouds" (in en). The Astrophysical Journal Supplement Series 141 (1): 81–122. doi:10.1086/338286. ISSN 0067-0049. Bibcode2002ApJS..141...81M. 
  71. Liermann, Adriane; Hamann, Wolf-Rainer; Oskinova, Lidia M.; Todt, Helge (January 2011). "High-mass stars in the Galactic center Quintuplet cluster". Société Royale des Sciences de Liège, Bulletin 80: 160–164. ISSN 0037-9565. Bibcode2011BSRSL..80..160L. 
  72. Clark, J.S.; Lohr, M.E.; Patrick, L.R.; Najarro, F.; Dong, H.; Figer, D.F. (October 2018). "An updated stellar census of the Quintuplet cluster". Astronomy & Astrophysics 618: A2. doi:10.1051/0004-6361/201833041. ISSN 0004-6361. Bibcode2018A&A...618A...2C. 
  73. Testor, G.; Niemela, V. (June 1998). "The OB associations LH 101 and LH 104 in the HII region N158 of the LMC". Astronomy and Astrophysics Supplement Series 130 (3): 527–538. doi:10.1051/aas:1998241. ISSN 0365-0138. Bibcode1998A&AS..130..527T. 
  74. Burggraf, B.; Weis, K.; Bomans, D.J. (December 2006). "LBVs in M33: Their environments and ages". 353. Astronomical Society of the Pacific. p. 245. Bibcode2006ASPC..353..245B. 
  75. Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M. (19 August 2016). "A spectroscopic survey of massive stars in M31 and M33". The Astronomical Journal 152 (3): 62. doi:10.3847/0004-6256/152/3/62. ISSN 1538-3881. Bibcode2016AJ....152...62M. 
  76. de Vries, N.; Portegies Zwart, S.; Figueira, J. (2014). "The evolution of triples with a Roche lobe filling outer star". Monthly Notices of the Royal Astronomical Society 438 (3): 1909. doi:10.1093/mnras/stt1688. Bibcode2014MNRAS.438.1909D. 
  77. Hill, G. M.; Moffat, A. F. J.; St-Louis, N. (1 October 2002). "Modelling the colliding-winds spectra of the 19-d WR + OB binary in the massive triple system θ Muscae" (in en). Monthly Notices of the Royal Astronomical Society 335 (4): 1069–1078. doi:10.1046/j.1365-8711.2002.05694.x. ISSN 0035-8711. Bibcode2002MNRAS.335.1069H. 
  78. Zsargó, J.; Fierro-Santillán, C.R.; Klapp, J.; Arrieta, A.; Arias, L.; Valencia, J.M. et al. (November 2020). "Creating and using large grids of precalculated model atmospheres for a rapid analysis of stellar spectra". Astronomy & Astrophysics 643: A88. doi:10.1051/0004-6361/202038066. ISSN 0004-6361. Bibcode2020A&A...643A..88Z. 
  79. Mitschang, Arik W.; Schulz, Norbert S.; Huenemoerder, David P.; Nichols, Joy S.; Testa, Paola (2011). "Detailed X-ray line properties of θ2 Ori A in quiescence". The Astrophysical Journal 734 (1): 14. doi:10.1088/0004-637X/734/1/14. Bibcode2011ApJ...734...14M. 
  80. Aldoretta, E.J.; Caballero-Nieves, S.M.; Gies, D.R.; Nelan, E.P.; Wallace, D.J.; Hartkopf, W.I. et al. (2015). "The multiplicity of massive stars: A high angular-resolution survey with the guidance sensor". The Astronomical Journal 149 (1): 26. doi:10.1088/0004-6256/149/1/26. Bibcode2015AJ....149...26A. 
  81. 81.0 81.1 81.2 Repolust, T.; Puls, J.; Herrero, A. (February 2004). "Stellar and wind parameters of Galactic O-stars: The influence of line-blocking/blanketing". Astronomy & Astrophysics 415 (1): 349–376. doi:10.1051/0004-6361:20034594. ISSN 0004-6361. Bibcode2004A&A...415..349R. 
  82. Rivet, J-P; Siciak, A.; de Almeida, E.S.G.; Vakili, F.; Domiciano de Souza, A.; Fouché, M. et al. (2020). "Intensity interferometry of P Cygni in the H α emission line: Towards distance calibration of LBV supergiant stars". Monthly Notices of the Royal Astronomical Society 494 (1): 218–227. doi:10.1093/mnras/staa588. Bibcode2020MNRAS.494..218R. 
  83. Kozok, J. R. (September 1985). "Photometric observations of emission B-stars in the southern Milky Way". Astronomy and Astrophysics Supplement Series 61: 387–405. Bibcode1985A&AS...61..387K. 
  84. Hummel, C. A.; Rivinius, Th.; Nieva, M.-F.; Stahl, O.; van Belle, G.; Zavala, R. T. (2013). "Dynamical mass of the O-type supergiant in ζ Orionis A". Astronomy & Astrophysics 554: A52. doi:10.1051/0004-6361/201321434. ISSN 0004-6361. Bibcode2013A&A...554A..52H. 
  85. Balega, Yu. Yu.; Chentsov, E.L.; Leushin, V.V.; Rzaev, A.Kh.; Weigelt, G. (2014). "Young massive binary θ1 Ori C: Radial velocities of components". Astrophysical Bulletin 69 (1): 46–57. doi:10.1134/S1990341314010052. ISSN 1990-3413. Bibcode2014AstBu..69...46B. 
  86. 86.0 86.1 Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R. (2008). "Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters". Astronomy and Astrophysics 481 (3): 777–797. doi:10.1051/0004-6361:20077125. Bibcode2008A&A...481..777S. 
  87. 87.0 87.1 87.2 87.3 87.4 87.5 87.6 87.7 87.8 87.9 Tetzlaff, N.; Neuhäuser, R.; Hohle, M. M. (2011). "A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun". Monthly Notices of the Royal Astronomical Society 410 (1): 190–200. doi:10.1111/j.1365-2966.2010.17434.x. Bibcode2011MNRAS.410..190T. 
  88. Kashi, Amit; Soker, Noam (1 November 2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae". The Astrophysical Journal 723 (1): 602–611. doi:10.1088/0004-637X/723/1/602. ISSN 0004-637X. Bibcode2010ApJ...723..602K. 
  89. 89.0 89.1 North, J.R.; Tuthill, P.G.; Tango, W.J.; Davis, J. (2007-05-01). "γ2 Velorum: Orbital solution and fundamental parameter determination with SUSI". Monthly Notices of the Royal Astronomical Society 377 (1): 415–424. doi:10.1111/j.1365-2966.2007.11608.x. ISSN 0035-8711. Bibcode2007MNRAS.377..415N. 
  90. 90.0 90.1 90.2 Hoffleit, Dorrit; Jaschek, Carlos (1991). The Bright star catalogue (5th Revised ed.). New Haven, Conn.: Yale University Observatory. Bibcode1991bsc..book.....H. 
  91. Shenar, T.; Oskinova, L.; Hamann, W.-R.; Corcoran, M.F.; Moffat, A.F.J.; Pablo, H. et al. (2015). "A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis". Astrophysical Journal 809 (2): 135. doi:10.1088/0004-637X/809/2/135. Bibcode2015ApJ...809..135S. 
  92. Tokovinin, A A. (1997). "MSC - a catalogue of physical multiple stars". Astronomy and Astrophysics Supplement Series 124: 75–84. doi:10.1051/aas:1997181. Bibcode1997A&AS..124...75T. 
  93. Dufton, P.L.; Smartt, S.J.; Lee, J.K.; Ryans, R.S.I.; Hunter, I.; Evans, C.J. et al. (2006). "The VLT-FLAMES survey of massive stars: stellar parameters and rotational velocities in NGC 3293, NGC 4755 and NGC 6611". Astronomy & Astrophysics 457 (1): 265–280. doi:10.1051/0004-6361:20065392. ISSN 0004-6361. Bibcode2006A&A...457..265D. 
  94. Shultz, M.; Wade, G.A.; Petit, V.; Grunhut, J.; Neiner, C.; Hanes, D. (2014). "An observational evaluation of magnetic confinement in the winds of BA supergiants". Monthly Notices of the Royal Astronomical Society 438 (2): 1114. doi:10.1093/mnras/stt2260. Bibcode2014MNRAS.438.1114S. 
  95. Smith, M.A. (August 1981). "Nonradial pulsations in the zero-age main-sequence star upsilon Orionis /09.5 V/". The Astrophysical Journal 248: 214–221. doi:10.1086/159145. ISSN 0004-637X. Bibcode1981ApJ...248..214S. 
  96. Nieva, M.-F. (2013). "Temperature, gravity, and bolometric correction scales for non-supergiant OB stars". Astronomy & Astrophysics 550: A26. doi:10.1051/0004-6361/201219677. ISSN 0004-6361. Bibcode2013A&A...550A..26N. 
  97. 97.0 97.1 97.2 Simón-Díaz, S.; Caballero, J.A.; Lorenzo, J.; Maíz Apellániz, J.; Schneider, F.R.N.; Negueruela, I. et al. (2015). "Orbital and Physical Properties of the σ Ori Aa, Ab, B Triple System". The Astrophysical Journal 799 (2): 169. doi:10.1088/0004-637X/799/2/169. Bibcode2015ApJ...799..169S. 
  98. 98.0 98.1 98.2 Mason, Brian D.; Wycoff, Gary L.; Hartkopf, William I.; Douglass, Geoffrey G.; Worley, Charles E. (2001). "The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog". The Astronomical Journal 122 (6): 3466. doi:10.1086/323920. Bibcode2001AJ....122.3466M. 
  99. Martins, F.; Schaerer, D.; Hillier, D. J.; Meynadier, F.; Heydari-Malayeri, M.; Walborn, N. R. (2005). "O stars with weak winds: the Galactic case". Astronomy & Astrophysics 441 (2): 735–762. doi:10.1051/0004-6361:20052927. ISSN 0004-6361. Bibcode2005A&A...441..735M. 
  100. 100.0 100.1 Hohle, M.M.; Neuhäuser, R.; Schutz, B.F. (April 2010). "Masses and luminosities of O- and B-type stars and red supergiants". Astronomische Nachrichten 331 (4): 349. doi:10.1002/asna.200911355. Bibcode2010AN....331..349H. 
  101. Przybilla, N.; Firnstein, M.; Nieva, M.F.; Meynet, G.; Maeder, A. (2010). "Mixing of CNO-cycled matter in massive stars". Astronomy and Astrophysics 517: A38. doi:10.1051/0004-6361/201014164. Bibcode2010A&A...517A..38P. 
  102. Firnstein, M.; Przybilla, N. (2012). "Quantitative spectroscopy of Galactic BA-type supergiants. I. Atmospheric parameters". Astronomy & Astrophysics 543: A80. doi:10.1051/0004-6361/201219034. Bibcode2012A&A...543A..80F. 
  103. 103.0 103.1 103.2 103.3 Johnson, H.L.; Iriarte, B.; Mitchell, R.I.; Wisniewskj, W.Z. (1966). "UBVRIJKL photometry of the bright stars". Communications of the Lunar and Planetary Laboratory 4 (99): 99. Bibcode1966CoLPL...4...99J. 
  104. Nieva, María-Fernanda; Przybilla, Norbert (2014). "Fundamental properties of nearby single early B-type stars". Astronomy & Astrophysics 566: A7. doi:10.1051/0004-6361/201423373. Bibcode2014A&A...566A...7N. 
  105. Mazumdar, A.; Briquet, M.; Desmet, M.; Aerts, C. (November 2006). "An asteroseismic study of the β Cephei star β Canis Majoris". Astronomy and Astrophysics 459 (2): 589–596. doi:10.1051/0004-6361:20064980. Bibcode2006A&A...459..589M. 
  106. Cousins, A.W.J. (1972). "UBV Photometry of Some Very Bright Stars". Monthly Notes of the Astronomical Society of Southern Africa 31: 69. Bibcode1972MNSSA..31...69C. 
  107. Cite error: Invalid <ref> tag; no text was provided for refs named marchenko
  108. 108.0 108.1 Nicolet, B. (1978). "Photoelectric photometric Catalogue of homogeneous measurements in the UBV System". Astronomy and Astrophysics Supplement Series 34: 1–49. Bibcode1978A&AS...34....1N. 
  109. Miroshnichenko, A.S.; Pasechnik, A.V.; Manset, N.; Carciofi, A.C.; Rivinius, Th.; Štefl, S. et al. (2013). "The 2011 periastron passage of the Be binary δ Scorpii". The Astrophysical Journal 766 (2): 119. doi:10.1088/0004-637X/766/2/119. Bibcode2013ApJ...766..119M. 
  110. Gutierrez-Moreno, Adelina; Moreno, Hugo (1968-06-01). "A Photometric Investigation of the SCORPlO-CENTAURUS Association". The Astrophysical Journal Supplement Series 15: 459. doi:10.1086/190168. ISSN 0067-0049. Bibcode1968ApJS...15..459G. 
  111. Nugis, T.; Lamers, H.J.G.L.M. (2000). "Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters". Astronomy and Astrophysics 360: 227. Bibcode2000A&A...360..227N. 
  112. Challouf, M.; Nardetto, N.; Mourard, D.; Graczyk, D.; Aroui, H.; Chesneau, O. et al. (2014). "Improving the surface brightness-color relation for early-type stars using optical interferometry". Astronomy & Astrophysics 570: A104. doi:10.1051/0004-6361/201423772. Bibcode2014A&A...570A.104C. 
  113. Kudritzki, R.P.; Reimers, D. (1978). "On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum of α Sco B and mass-loss of α Sco A". Astronomy and Astrophysics 70: 227. Bibcode1978A&A....70..227K. 
  114. Dervişoğlu, A.; Tout, Christopher A.; Ibanoğlu, C. (August 2010). "Spin angular momentum evolution of the long-period Algols". Monthly Notices of the Royal Astronomical Society 406 (2): 1071–1083. doi:10.1111/j.1365-2966.2010.16732.x. Bibcode2010MNRAS.406.1071D. 
  115. Nicolet, B. (October 1978). "Catalogue of homogeneous data in the UBV photoelectric photometric system". Astronomy and Astrophysics Supplement Series 34: 1–49. Bibcode1978A&AS...34....1N. 
  116. 116.0 116.1 David, Trevor J.; Hillenbrand, Lynne A. (2015). "The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets". The Astrophysical Journal 804 (2): 146. doi:10.1088/0004-637X/804/2/146. Bibcode2015ApJ...804..146D. 
  117. Zorec, J.; Frémat, Y.; Cidale, L. (2005). "On the evolutionary status of Be stars. I. Field Be stars near the Sun". Astronomy and Astrophysics 441 (1): 235–248. doi:10.1051/0004-6361:20053051. Bibcode2005A&A...441..235Z. 
  118. Fernie, J.D. (May 1983). "New UBVRI photometry for 900 supergiants". Astrophysical Journal Supplement Series 52: 7–22. doi:10.1086/190856. Bibcode1983ApJS...52....7F. 
  119. Hubrig, S.; Briquet, M.; de Cat, P.; Schöller, M.; Morel, T.; Ilyin, I. (2009). "New magnetic field measurements of β Cephei stars and slowly pulsating B stars" (in en). Astronomische Nachrichten 330 (4): 317–329. doi:10.1002/asna.200811187. Bibcode2009AN....330..317H. 
  120. de Almeida, E.S.G.; Meilland, A.; Domiciano de Souza, A.; Stee, P.; Mourard, D.; Nardetto, N. et al. (April 2020). "Visible and near-infrared spectro-interferometric analysis of the edge-on Be star o Aquarii". Astronomy & Astrophysics 636: 23. doi:10.1051/0004-6361/201936039. A110. Bibcode2020A&A...636A.110D. 
  121. Feinstein, A.; Marraco, H.G. (November 1979). "The photometric behavior of Be Stars". Astronomical Journal 84: 1713–1725. doi:10.1086/112600. Bibcode1979AJ.....84.1713F. 
  122. North, P. (1998). "Do SI stars undergo any rotational braking?". Astronomy and Astrophysics 334: 181–187. Bibcode1998A&A...334..181N. 
  123. Mermilliod, J.-C. (1986). "Compilation of Eggen's UBV data, transformed to UBV (unpublished)". Catalogue of Eggen's UBV Data (SIMBAD). 
  124. Mamajek, Eric E.; Lawson, Warrick A.; Feigelson, Eric D. (1999). "The η Chamaeleontis cluster: A remarkable new nearby young open cluster". The Astrophysical Journal 516 (2): L77–L80. doi:10.1086/312005. Bibcode1999ApJ...516L..77M. 
  125. Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W.A.; Sicilia-Aguilar, A. (January 2013). "Young stars in ϵ Chamaleontis and their disks: Disk evolution in sparse associations". Astronomy & Astrophysics 549: A15. doi:10.1051/0004-6361/201118528. ISSN 0004-6361. Bibcode2013A&A...549A..15F. 
  126. 126.0 126.1 Zorec, J.; Royer, F. (2012). "Rotational velocities of A-type stars". Astronomy & Astrophysics 537: A120. doi:10.1051/0004-6361/201117691. Bibcode2012A&A...537A.120Z. 
  127. Corben, P.M.; Stoy, R.H. (1968). "Photoelectric Magnitudes and Colours for Bright Southern Stars". Monthly Notes of the Astronomical Society of Southern Africa 27: 11. Bibcode1968MNSSA..27...11C. 
  128. Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters 38 (5): 331. doi:10.1134/S1063773712050015. Bibcode2012AstL...38..331A. 
  129. Luzum, Brian; Capitaine, Nicole; Fienga, Agnès; Folkner, William; Fukushima, Toshio; Hilton, James et al. (August 2011). "The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy" (in en). Celestial Mechanics and Dynamical Astronomy 110 (4): 293–304. doi:10.1007/s10569-011-9352-4. ISSN 0923-2958. Bibcode2011CeMDA.110..293L. 
  130. Bessell, M.S.; Castelli, F.; Plez, B. (May 1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O–M stars". Astronomy & Astrophysics 333: 231–250. ISSN 0004-6361. Bibcode1998A&A...333..231B. 
  131. Mamajek, E.E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P.D.; et al. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].

External links