Chemistry:Benzonitrile

From HandWiki
Revision as of 16:20, 26 June 2023 by John Stpola (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Benzonitrile
Skeletal formula
Ball-and-stick model
Names
Preferred IUPAC name
Benzonitrile
Systematic IUPAC name
Benzenecarbonitrile
Other names
Identifiers
3D model (JSmol)
3DMet
506893
ChEBI
ChEMBL
ChemSpider
EC Number
  • 202-855-7
2653
KEGG
RTECS number
  • DI2450000
UNII
UN number 2224
Properties
C
6
H
5
(CN)
Molar mass 103.12 g/mol
Density 1.0 g/ml
Melting point −13 °C (9 °F; 260 K)
Boiling point 188 to 191 °C (370 to 376 °F; 461 to 464 K)
<0.5 g/100 ml (22 °C)
-65.19·10−6 cm3/mol
1.5280
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H302, H312
P264, P270, P280, P301+312, P302+352, P312, P322, P330, P363, P501
NFPA 704 (fire diamond)
Flammability code 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelHealth code 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
2
3
0
Flash point 75 °C (167 °F; 348 K)
550 °C (1,022 °F; 823 K)
Explosive limits 1.4–7.2%
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Benzonitrile is the chemical compound with the formula C
6
H
5
(CN)
, abbreviated PhCN. This aromatic organic compound is a colorless liquid with a sweet bitter almond odour. It is mainly used as a precursor to the resin benzoguanamine.

Production

It is prepared by ammoxidation of toluene, that is its reaction with ammonia and oxygen (or air) at 400 to 450 °C (752 to 842 °F).[1]

C
6
H
5
CH
3
+ 3/2 O
2
+ NH
3
C
6
H
5
(CN)
+ 3 H
2
O

In the laboratory it can be prepared by the dehydration of benzamide or benzaldehyde oxime[2] or by the Rosenmund–von Braun reaction using cuprous cyanide or NaCN/DMSO and bromobenzene.

Rosenmund-von Braun synthesis

Applications

Laboratory uses

Benzonitrile is a useful solvent and a versatile precursor to many derivatives. It reacts with amines to afford N-substituted benzamides after hydrolysis.[3] It is a precursor to diphenylketimine Ph
2
C=NH
(b.p. 151 °C, 8 mm Hg) via reaction with phenylmagnesium bromide followed by methanolysis.[4]

Benzonitrile forms coordination complexes with transition metals that are both soluble in organic solvents and conveniently labile. One example is PdCl
2
(PhCN)
2
. The benzonitrile ligands are readily displaced by stronger ligands, making benzonitrile complexes useful synthetic intermediates.[5]

History

Benzonitrile was reported by Hermann Fehling in 1844. He found the compound as a product from the thermal dehydration of ammonium benzoate. He deduced its structure from the already known analogue reaction of ammonium formate yielding hydrogen cyanide (formonitrile). He also coined the name benzonitrile which gave the name to all the group of nitriles.[6]

In 2018, benzonitrile was reported to be detected in the interstellar medium.[7]

References

  1. Maki, Takao; Takeda, Kazuo (June 2000). "Benzoic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a03_555. ISBN 3527306730. 
  2. Loupy, André; Régnier, Serge (August 1999). "Solvent-free microwave-assisted Beckmann rearrangement of benzaldehyde and 2-hydroxyacetophenone oximes". Tetrahedron Letters 40 (34): 6221–6224. doi:10.1016/S0040-4039(99)01159-4. ISSN 0040-4039. 
  3. Cooper, F. C.; Partridge, M. W. (1963). "N-Phenylbenzamidine". Organic Syntheses. http://www.orgsyn.org/demo.aspx?prep=cv4p0769. ; Collective Volume, 4, pp. 769 
  4. Pickard, P. L.; Tolbert, T. L. (1973). "Diphenyl Ketimine". Organic Syntheses. http://www.orgsyn.org/demo.aspx?prep=cv5p0520. ; Collective Volume, 5, pp. 520 
  5. Anderson, Gordon K.; Lin, Minren (1990). "Bis(Benzonitrile)Dichloro Complexes of Palladium and Platinum". Reagents for Transition Metal Complex and Organometallic Syntheses. Inorganic Syntheses. 28. John Wiley & Sons. pp. 60–63. doi:10.1002/9780470132593.ch13. ISBN 978-0-470-13259-3. 
  6. Fehling, Hermann (1844). "Ueber die Zersetzung des benzoësauren Ammoniaks durch die Wärme". Annalen der Chemie und Pharmacie 49 (1): 91–97. doi:10.1002/jlac.18440490106. https://zenodo.org/record/1426978. 
  7. McGuire, Brett A. et al. (January 2018). "Detection of the aromatic molecule benzonitrile (c\sC6H5CN) in the interstellar medium". Science 359 (6372): 202–205. doi:10.1126/science.aao4890. PMID 29326270. Bibcode2018Sci...359..202M. 

External links