Physics:List of interstellar and circumstellar molecules

From HandWiki
Short description: Molecules detected in space
Infrared spectrum of HH 46/47 (image in inset), with vibrational bands of several molecules labelled in colour

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

Background

Idealised example of the rotational spectrum (bottom) produced by transitions between different rotational energy levels (top) of a simple linear molecule. [math]\displaystyle{ B }[/math] is the rotational constant of the molecule, [math]\displaystyle{ J }[/math] is the rotational quantum number, [math]\displaystyle{ J' }[/math] is the upper level and [math]\displaystyle{ J'' }[/math] is the lower level.

The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths.[1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches.[2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect.[3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical).[4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s.[3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect: e.g. radio astronomy is most sensitive to small linear molecules with a high molecular dipole.[3] The most common molecule in the Universe, H2 (molecular hydrogen), is completely invisible to radio telescopes because it has no dipole;[3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket.[5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984,[6] showing the class of molecules is very common in space,[7] but it took until 2021 to identify any specific PAHs through their rotational lines.[8][9]

The carbon star CW Leo. The visible shells of circumstellar material were ejected by the central star over thousands of years.

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there.[10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified.[11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry.[12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks.[13] The use of molecular lines to determine the physical properties of astronomical objects is known as molecular astrophysics.

Molecules

The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4.[14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds.[14]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[15]

Diatomic (43)

Molecule Designation Mass Ions
AlCl Aluminium monochloride[16][17] 62.5
AlF Aluminium monofluoride[16][18] 46
AlO Aluminium monoxide[19] 43
Argonium[20][21] 37[note 1] ArH+
C2 Diatomic carbon[22][23] 24
Fluoromethylidynium 31 CF+[24]
CH Methylidyne radical[25][26] 13 CH+[27]
CN Cyano radical[16][26][28][29] 26 CN+,[30] CN[31]
CO Carbon monoxide[16][32][33] 28 CO+[34]
CP Carbon monophosphide[29] 43
CS Carbon monosulfide[16] 44
FeO Iron(II) oxide[35] 82
Helium hydride ion[36][37] 5 HeH+
H2 Molecular hydrogen[5] 2
HCl Hydrogen chloride[38] 36.5 HCl+[39]
HF Hydrogen fluoride[40] 20
HO Hydroxyl radical[16] 17 OH+[41]
KCl Potassium chloride[16][17] 75.5
NH Imidogen radical[42][43] 15
N2 Molecular nitrogen[44][45] 28
NO Nitric oxide[46] 30 NO+[30]
NS Nitrogen sulfide[16] 46
NaCl Sodium chloride[16][17] 58.5
Magnesium monohydride cation 25.3 MgH+[30]
O2 Molecular oxygen[47] 32
PN Phosphorus mononitride[48][49] 45
PO Phosphorus monoxide[50] 47
SH Sulfur monohydride[51] 33 SH+[52]
SO Sulfur monoxide[16] 48 SO+[27]
SiC Carborundum[16][53] 40
SiN [54] 42
SiO Silicon monoxide[16] 44
SiS Silicon monosulfide[16] 60
TiO Titanium(II) oxide[55] 63.9
The H+3 cation is one of the most abundant ions in the universe. It was first detected in 1993.[56][57]

Triatomic (44)

Molecule Designation Mass Ions
AlNC Aluminium isocyanide[16] 53
AlOH Aluminium hydroxide[58] 44
C3 Tricarbon[59][60] 36
C2H Ethynyl radical[16][28] 25
CCN Cyanomethylidyne[61] 38
C2O Dicarbon monoxide[62] 40
C2S Thioxoethenylidene[63] 56
C2P [64] 55
CO2 Carbon dioxide[65] 44
CaNC Calcium isocyanide[66] 92
FeCN Iron cyanide[67] 82
Protonated molecular hydrogen 3 H+3[56][57]
H2C Methylene radical[68] 14
Chloronium 37.5 H2Cl+[69]
H2O Water[70] 18 H2O+[71]
HO2 Hydroperoxyl[72] 33
H2S Hydrogen sulfide[16] 34
HCN Hydrogen cyanide[16][28][73] 27
HNC Hydrogen isocyanide[74][75] 27
HCO Formyl radical[76] 29 HCO+[27][76][77]
HCP Phosphaethyne[78] 44
HCS Thioformyl[79] 45 HCS+[27][77]
Diazenylium[77][27][80] 29 HN+2
HNO Nitroxyl[81] 31
Isoformyl 29 HOC+[28]
HSC Isothioformyl[79] 45
KCN Potassium cyanide[16] 65
MgCN Magnesium cyanide[16] 50
MgNC Magnesium isocyanide[16] 50
NH2 Amino radical[82] 16
N2O Nitrous oxide[83] 44
NaCN Sodium cyanide[16] 49
NaOH Sodium hydroxide[84] 40
OCS Carbonyl sulfide[85] 60
O3 Ozone[86] 48
SO2 Sulfur dioxide[16][87] 64
c-SiC2 c-Silicon dicarbide[16][53] 52
SiCSi Disilicon carbide[88] 68
SiCN Silicon carbonitride[89] 54
SiNC [90] 54
TiO2 Titanium dioxide[55] 79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[91]

Four atoms (30)

Molecule Designation Mass Ions
CH3 Methyl radical[92] 15 CH+
3
[93]
l-C3H Propynylidyne[16][94] 37 l-C3H+[95]
c-C3H Cyclopropynylidyne[96] 37
C3N Cyanoethynyl[97] 50 C3N[98]
C3O Tricarbon monoxide[94] 52
C3S Tricarbon sulfide[16][63] 68
Hydronium 19 H3O+[99]
C2H2 Acetylene[100] 26
H2CN Methylene amidogen[101] 28 H2CN+[27]
H2NC Aminocarbyne[102] 28
H2CO Formaldehyde[91] 30
H2CS Thioformaldehyde[103] 46
HCCN [104] 39
HCCO Ketenyl[105] 41
Protonated hydrogen cyanide 28 HCNH+[77]
Protonated carbon dioxide 45 HOCO+[106]
HCNO Fulminic acid[107] 43
HOCN Cyanic acid[108] 43
CNCN Isocyanogen[109] 52
HOOH Hydrogen peroxide[110] 34
HNCO Isocyanic acid[87] 43
HNCN Cyanomidyl radical[111] 41
HNCS Isothiocyanic acid[112] 59
NH3 Ammonia[16][113] 17
HSCN Thiocyanic acid[114] 59
SiC3 Silicon tricarbide[16]  64
HMgNC Hydromagnesium isocyanide[115]  51.3
HNO2 Nitrous acid[116] 47
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[117]

Five atoms (20)

Molecule Designation Mass Ions
Ammonium ion 18 NH+4[118][119]
CH4 Methane[120] 16
CH3O Methoxy radical[121] 31
c-C3H2 Cyclopropenylidene[28][122][123] 38
l-H2C3 Propadienylidene[123] 38
H2CCN Cyanomethyl[124] 40
H2C2O Ketene[87] 42
H2CNH Methylenimine[125] 29
HNCNH Carbodiimide[126] 42
Protonated formaldehyde 31 H2COH+[127]
C4H Butadiynyl[16] 49 C4H[128]
HC3N Cyanoacetylene[16][28][77][129][130] 51
HCC-NC Isocyanoacetylene[131] 51
HCOOH Formic acid[132][129] 46
NH2CN Cyanamide[133][134] 42
NH2OH Hydroxylamine[135] 37
Protonated cyanogen 53 NCCNH+[136]
HC(O)CN Cyanoformaldehyde[137] 55
C5 Linear C5[138] 60
SiC4 Silicon-carbide cluster[53] 92
SiH4 Silane[139] 32
In the ISM, formamide (above) can combine with methylene to form acetamide.[140]

Six atoms (16)

Molecule Designation Mass Ions
c-H2C3O Cyclopropenone[141] 54
E-HNCHCN E-Cyanomethanimine[142] 54
C2H4 Ethylene[143] 28
CH3CN Acetonitrile[87][144][145] 40
CH3NC Methyl isocyanide[144] 40
CH3OH Methanol[87][146] 32
CH3SH Methanethiol[147] 48
l-H2C4 Diacetylene[16][148] 50
Protonated cyanoacetylene 52 HC3NH+[77]
HCONH2 Formamide[140] 44
HOCOOH Carbonic acid[149]
C5H Pentynylidyne[16][63] 61
C5N Cyanobutadiynyl radical[150] 74
HC2CHO Propynal[151] 54
HC4N [16]  63
CH2CNH Ketenimine[122] 40
C5S [152] 92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.[153]

Seven atoms (13)

Molecule Designation Mass Ions
c-C2H4O Ethylene oxide[154] 44
CH3C2H Methylacetylene[28] 40
H3CNH2 Methylamine[155] 31
CH2CHCN Acrylonitrile[87][144] 53
53
H2CHCOH Vinyl alcohol[153] 44
C6H Hexatriynyl radical[16][63] 73 C6H[123][156]
HC4CN Cyanodiacetylene[87][130][144] 75
HC4NC Isocyanodiacetylene[157] 75
HC5O [158] 77
CH3CHO Acetaldehyde[16][154] 44
CH3NCO Methyl isocyanate[159] 57
HOCH2CN Glycolonitrile[160] 57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[161]

Eight atoms (14)

Molecule Designation Mass
H3CC2CN Methylcyanoacetylene[162] 65
HC3H2CN Propargyl cyanide[163] 65
H2COHCHO Glycolaldehyde[164][165] 60
(CHOH)2 1,2-ethenediol[166] 60
HCOOCH3 Methyl formate[87][129][165] 60
CH3COOH Acetic acid[161] 60
H2C6 Hexapentaenylidene[16][148] 74
CH2CHCHO Propenal[122] 56
CH2CCHCN Cyanoallene[122][162] 65
CH3CHNH Ethanimine[167] 43
C2H3NH2 Vinylamine[168] 43
C7H Heptatrienyl radical[169] 85
NH2CH2CN Aminoacetonitrile[170] 56
(NH2)2CO Urea[171] 60

Nine atoms (10)

Molecule Designation Mass Ions
CH3C4H Methyldiacetylene[172] 64
CH3OCH3 Dimethyl ether[173] 46
CH3CH2CN Propionitrile[16][87][144] 55
CH3CONH2 Acetamide[122][140][134] 59
CH3CH2OH Ethanol[174] 46
C8H Octatetraynyl radical[175] 97 C8H[176][177]
HC7N Cyanohexatriyne or Cyanotriacetylene[16][113][178][179] 99
CH3CHCH2 Propylene (propene)[180] 42
CH3CH2SH Ethyl mercaptan[181] 62
CH3NHCHO N-methylformamide[134]
Diacetylene, HCCCCH
Methyldiacetylene, HCCCCCH3
Cyanotetraacetylene, HCCCCCCCCCN
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (21)

Atoms Molecule Designation Mass Ions
10 (CH3)2CO Acetone[87][182] 58
10 (CH2OH)2 Ethylene glycol[183][184] 62
10 CH3CH2CHO Propanal[122] 58
10 CH3OCH2OH Methoxymethanol[185] 62
10 CH3C5N Methylcyanodiacetylene[122] 89
10 CH3CHCH2O Propylene oxide[186] 58
11 NH2CH2CH2OH Ethanolamine[187] 61
11 HC8CN Cyanotetraacetylene[16][178] 123
11 C2H5OCHO Ethyl formate[188] 74
11 CH3COOCH3 Methyl acetate[189] 74
11 CH3C6H Methyltriacetylene[122][172] 88
12 C6H6 Benzene[148] 78
12 C3H7CN n-Propyl cyanide[188] 69
12 (CH3)2CHCN iso-Propyl cyanide[190][191] 69
13 C6H5CN Benzonitrile[192] 104
13 HC10CN Cyanopentaacetylene[178] 147
17 C9H8 Indene[9] 116
19 C10H7CN 1-cyanonaphthalene[8] 153
19 C10H7CN 2-cyanonaphthalene[8] 153
27 C11H12N2O2 Tryptophan[193]
60 C60 Buckminsterfullerene
(C60 fullerene)
[194]
720 C+60[195][196][197]
70 C70 C70 fullerene[194] 840

Deuterated molecules (22)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

Atoms Molecule Designation
2 HD Hydrogen deuteride[198][199]
3 H2D+, HD+2 Trihydrogen cation[198][199]
3 HDO, D2O Heavy water[200][201]
3 DCN Hydrogen cyanide[202]
3 DCO Formyl radical[202]
3 DNC Hydrogen isocyanide[202]
3 N2D+ [202] 
3 NHD, ND2 Amidogen[203] 
4 NH2D, NHD2, ND3 Ammonia[199][204][205]
4 HDCO, D2CO Formaldehyde[199][206]
4 DNCO Isocyanic acid[207]
5 NH3D+ Ammonium ion[208][209]
6 NH2CDO; NHDCHO Formamide[207]
7 CH2DCCH, CH3CCD Methylacetylene[210][211]

Unconfirmed (13)

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

Atoms Molecule Designation
2 SiH Silylidine[74]
4 PH3 Phosphine[212]
4 MgCCH Magnesium monoacetylide[152]
4 NCCP Cyanophosphaethyne[152]
5 H2NCO+ [213]
6 SiH3CN Silyl cyanide[152]
10 H2NCH2COOH Glycine[214][215]
10 C2H5NH2 Ethylamine[168]
12 CO(CH2OH)2 Dihydroxyacetone[216][217]
12 C2H5OCH3 Ethyl methyl ether[218]
18 C10H+8 Naphthalene cation[219]
24 C24 Graphene[220]
24 C14H10 Anthracene[221][222]
26 C16H10 Pyrene[221]

See also


References

  1. Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy, University Science Books, ISBN 978-0-935702-05-7, https://archive.org/details/physicaluniverse00shuf 
  2. Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal 236: 474. doi:10.1086/157764. Bibcode1980ApJ...236..474C. 
  3. 3.0 3.1 3.2 3.3 McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series 239 (2): 17. doi:10.3847/1538-4365/aae5d2. Bibcode2018ApJS..239...17M. 
  4. Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, http://www.astrochymist.org/AMOTM/amotm_0505.html, retrieved 2007-02-13 
  5. 5.0 5.1 Carruthers, George R. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal 161: L81–L85, doi:10.1086/180575, Bibcode1970ApJ...161L..81C 
  6. Leger, A.; Puget, J. L. (1984). "Identification of the "unidentified" IR emission features of interstellar dust ?". Astronomy and Astrophysics 137: L5. Bibcode1984A&A...137L...5L. 
  7. Tielens, A.G.G.M. (2008). "Interstellar Polycyclic Aromatic Hydrocarbon Molecules". Annual Review of Astronomy and Astrophysics 46: 289–337. doi:10.1146/annurev.astro.46.060407.145211. Bibcode2008ARA&A..46..289T. https://zenodo.org/record/1234931. 
  8. 8.0 8.1 8.2 McGuire, Brett A.; Loomis, Ryan A.; Burkhardt, Andrew M.; Lee, Kin Long Kelvin; Shingledecker, Christopher N.; Charnley, Steven B.; Cooke, Ilsa R.; Cordiner, Martin A. et al. (19 March 2021). "Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering". Science 371 (6535): 1265–1269. doi:10.1126/science.abb7535. PMID 33737489. Bibcode2021Sci...371.1265M. 
  9. 9.0 9.1 Burkhardt, Andrew M.; Long Kelvin Lee, Kin; Bryan Changala, P.; Shingledecker, Christopher N.; Cooke, Ilsa R.; Loomis, Ryan A.; Wei, Hongji; Charnley, Steven B. et al. (1 June 2021). "Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1". The Astrophysical Journal Letters 913 (2): L18. doi:10.3847/2041-8213/abfd3a. Bibcode2021ApJ...913L..18B. 
  10. Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series 60: 819–878, doi:10.1086/191102, Bibcode1986ApJS...60..819C 
  11. Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN 978-0-387-95436-3, https://books.google.com/books?id=Aq24O7B4ehoC&pg=PA107, retrieved 2011-05-09 
  12. Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN 978-0-7503-0310-1 
  13. Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences 103 (33): 12269–12273, doi:10.1073/pnas.0602117103, PMID 16894166, Bibcode2006PNAS..10312269D 
  14. 14.0 14.1 Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry 62: 173–184, doi:10.1146/annurev-physchem-032210-103332, PMID 21128763, Bibcode2011ARPC...62..173K 
  15. The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, http://astro.kent.ac.uk/gw/molcloud.html, retrieved 2007-02-16 
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 16.12 16.13 16.14 16.15 16.16 16.17 16.18 16.19 16.20 16.21 16.22 16.23 16.24 16.25 16.26 16.27 16.28 16.29 16.30 16.31 16.32 16.33 16.34 16.35 16.36 16.37 Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences 103 (33): 12274–12279, doi:10.1073/pnas.0602277103, PMID 16894164, Bibcode2006PNAS..10312274Z 
  17. 17.0 17.1 17.2 Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics 183 (1): L10–L12, Bibcode1987A&A...183L..10C 
  18. Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal 433 (2): 729–732, doi:10.1086/174682, Bibcode1994ApJ...433..729Z 
  19. Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal 694 (1): L59–L63, doi:10.1088/0004-637X/694/1/L59, Bibcode2009ApJ...694L..59T 
  20. Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M. et al. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science 342 (6164): 1343–1345, doi:10.1126/science.1243582, PMID 24337290, Bibcode2013Sci...342.1343B 
  21. Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times. https://www.nytimes.com/2013/12/17/science/space/noble-molecules-found-in-space.html. 
  22. Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal 216: L49. doi:10.1086/182507. Bibcode1977ApJ...216L..49S. 
  23. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal 438: 740–749, doi:10.1086/175119, Bibcode1995ApJ...438..740L 
  24. Neufeld, D. A. et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics 454 (2): L37–L40, doi:10.1051/0004-6361:200600015, Bibcode2006A&A...454L..37N 
  25. Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA. http://www.jpl.nasa.gov/news/news.php?feature=6645. 
  26. 26.0 26.1 Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal 93: 11–23, doi:10.1086/144237, Bibcode1941ApJ....93...11A 
  27. 27.0 27.1 27.2 27.3 27.4 27.5 Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London 324 (1578): 257–273, doi:10.1098/rsta.1988.0016, Bibcode1988RSPTA.324..257S 
  28. 28.0 28.1 28.2 28.3 28.4 28.5 28.6 Fuente, A. et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal 619 (2): L155–L158, doi:10.1086/427990, Bibcode2005ApJ...619L.155F 
  29. 29.0 29.1 Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics 230: L9–L11, Bibcode1990A&A...230L...9G 
  30. 30.0 30.1 30.2 Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN 978-3-540-43362-0 
  31. Agúndez, M. et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics 517: L2, doi:10.1051/0004-6361/201015186, Bibcode2010A&A...517L...2A, http://www.aanda.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/aa/full_html/2010/09/aa15186-10/aa15186-10.html, retrieved 2010-09-03 
  32. Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times. http://www.latimes.com/science/sciencenow/la-sci-sn-beta-pictoris-star-planet-gas-collision-comets-carbon-monoxide-20140307,0,1884709.story. 
  33. Dent, W.R.F.; Wyatt, M.C.; Roberge, A.; Augereau, J.-C.; Casassus, S.; Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I et al. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science 343 (6178): 1490–1492. doi:10.1126/science.1248726. PMID 24603151. Bibcode2014Sci...343.1490D. 
  34. Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters 419: L97, doi:10.1086/187146, Bibcode1993ApJ...419L..97L 
  35. Furuya, R. S. et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics 409 (2): L21–L24, doi:10.1051/0004-6361:20031304, Bibcode2003A&A...409L..21F 
  36. Fisher, Christine (17 April 2019). "NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away.". Engadget. https://www.engadget.com/2019/04/17/nasa-sofia-detects-helium-hydride/. 
  37. Güsten, Rolf (17 April 2019). "Astrophysical detection of the helium hydride ion HeH+". Nature 568 (7752): 357–359. doi:10.1038/s41586-019-1090-x. PMID 30996316. Bibcode2019Natur.568..357G. 
  38. Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1", Astrophysical Journal, Part 1 295: 501–506, doi:10.1086/163394, Bibcode1985ApJ...295..501B, https://authors.library.caltech.edu/33967/1/1985ApJ___295__501B.pdf 
  39. De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C. et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters 751 (2): L37, doi:10.1088/2041-8205/751/2/L37, Bibcode2012ApJ...751L..37D 
  40. Neufeld, David A. et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters 488 (2): L141–L144, doi:10.1086/310942, Bibcode1997ApJ...488L.141N 
  41. Wyrowski, F. et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics 518: A26, doi:10.1051/0004-6361/201014364, Bibcode2010A&A...518A..26W 
  42. Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters 376: L49–L52, doi:10.1086/186100, Bibcode1991ApJ...376L..49M 
  43. Wagenblast, R. et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society 260 (2): 420–424, doi:10.1093/mnras/260.2.420, Bibcode1993MNRAS.260..420W 
  44. Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, June 9, 2004, http://www.spacedaily.com/news/stellar-chemistry-04a.html, retrieved 2010-06-25 
  45. Knauth, D. C et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature 429 (6992): 636–638, doi:10.1038/nature02614, PMID 15190346, Bibcode2004Natur.429..636K 
  46. McGonagle, D. et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1 359 (1 Pt 1): 121–124, doi:10.1086/169040, PMID 11538685, Bibcode1990ApJ...359..121M 
  47. Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space, Physorg.com, http://www.physorg.com/news94210066.html, retrieved 2007-04-02 
  48. Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal 321: L75. doi:10.1086/185009. Bibcode1987ApJ...321L..75T. 
  49. Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters 321 (1 Pt 2): L81–L85, doi:10.1086/185010, PMID 11542218, Bibcode1987ApJ...321L..81Z 
  50. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters 666 (1): L29–L32, doi:10.1086/521361, Bibcode2007ApJ...666L..29T 
  51. Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal 528 (1): L33–L36, doi:10.1086/312420, PMID 10587489, Bibcode2000ApJ...528L..33Y 
  52. Menten, K. M. et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics 525: A77, doi:10.1051/0004-6361/201014363, Bibcode2011A&A...525A..77M. 
  53. 53.0 53.1 53.2 Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science 226 (1): 149–163, doi:10.1007/BF00626907, Bibcode1995Ap&SS.226..149P 
  54. Turner, B. E. (1992). "Detection of SiN in IRC + 10216". The Astrophysical Journal 388: L35. doi:10.1086/186324. Bibcode1992ApJ...388L..35T. 
  55. 55.0 55.1 Kamiński, T. et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics 551: A113, doi:10.1051/0004-6361/201220290, Bibcode2013A&A...551A.113K 
  56. 56.0 56.1 Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences 103 (33): 12235–12242, doi:10.1073/pnas.0601242103, PMID 16894171, Bibcode2006PNAS..10312235O 
  57. 57.0 57.1 Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature 384 (6607): 334–335, doi:10.1038/384334a0, PMID 8934516, Bibcode1996Natur.384..334G 
  58. Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal 712 (1): L93–L97, doi:10.1088/2041-8205/712/1/L93, Bibcode2010ApJ...712L..93T 
  59. Hinkle, K. W; Keady, J. J; Bernath, P. F (1988). "Detection of C3 in the Circumstellar Shell of IRC+10216". Science 241 (4871): 1319–22. doi:10.1126/science.241.4871.1319. PMID 17828935. Bibcode1988Sci...241.1319H. https://zenodo.org/record/1230984. 
  60. Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal 553 (1): 267–273. doi:10.1086/320668. Bibcode2001ApJ...553..267M. 
  61. Anderson, J. K. et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal 795 (1): L1, doi:10.1088/2041-8205/795/1/L1, Bibcode2014ApJ...795L...1A 
  62. Ohishi, Masatoshi, Masatoshi et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters 380: L39–L42, doi:10.1086/186168, PMID 11538087, Bibcode1991ApJ...380L..39O 
  63. 63.0 63.1 63.2 63.3 Irvine, William M. et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications 26: 167–180, PMID 11538461, Bibcode1988ApL&C..26..167I 
  64. Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal 677 (2): L101–L104, doi:10.1086/588024, Bibcode2008ApJ...677L.101H 
  65. Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society 252: 63–67, doi:10.1093/mnras/252.1.63, Bibcode1991MNRAS.252...63W 
  66. Cernicharo, J.; Velilla-Prieto, L.; Agúndez, M.; Pardo, J. R.; Fonfría, J. P.; Quintana-Lacaci, G.; Cabezas, C.; Bermúdez, C. et al. (2019). "Discovery of the first Ca-bearing molecule in space: CaNC". Astronomy & Astrophysics 627: L4. doi:10.1051/0004-6361/201936040. PMID 31327871. Bibcode2019A&A...627L...4C. 
  67. Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters 733 (2): L36, doi:10.1088/2041-8205/733/2/L36, Bibcode2011ApJ...733L..36Z 
  68. Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1 438: 259–264, doi:10.1086/175070, Bibcode1995ApJ...438..259H 
  69. Lis, D. C. et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics 521: L9, doi:10.1051/0004-6361/201014959, Bibcode2010A&A...521L...9L. 
  70. "Europe's space telescope ISO finds water in distant places", XMM-Newton Press Release: 12, April 29, 1997, Bibcode1997xmm..pres...12., http://www.iso.vilspa.esa.es/outreach/esa_pr/in9712.htm, retrieved 2007-02-08 
  71. Ossenkopf, V. et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics 518: L111, doi:10.1051/0004-6361/201014577, Bibcode2010A&A...518L.111O. 
  72. Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters 541: L11–L14, doi:10.1051/0004-6361/201219379, Bibcode2012A&A...541L..11P 
  73. Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal 163: L47–L52, doi:10.1086/180664, Bibcode1971ApJ...163L..47S 
  74. 74.0 74.1 Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series 132 (2): 281–364, doi:10.1086/318951, Bibcode2001ApJS..132..281S 
  75. Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal 582 (2): L101–L104, doi:10.1086/367628, Bibcode2003ApJ...582L.101S 
  76. 76.0 76.1 Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters 303: L71–L74, doi:10.1086/184655, Bibcode1986ApJ...303L..71S 
  77. 77.0 77.1 77.2 77.3 77.4 77.5 Kawaguchi, Kentarou et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal 420: L95, doi:10.1086/187171, Bibcode1994ApJ...420L..95K 
  78. Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal 662 (2): L91, doi:10.1086/519561, Bibcode2007ApJ...662L..91A 
  79. 79.0 79.1 Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M (2018). "Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry". Astronomy & Astrophysics 611: L1. doi:10.1051/0004-6361/201832743. PMID 29983448. Bibcode2018A&A...611L...1A. 
  80. Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1 387: 417–429, doi:10.1086/171094, Bibcode1992ApJ...387..417W 
  81. Hollis, J. M. et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms 16: 407–412, Bibcode1991ASPC...16..407H 
  82. van Dishoeck, Ewine F. et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters 416: L83–L86, doi:10.1086/187076, Bibcode1993ApJ...416L..83V 
  83. Ziurys, L. M. et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters 436: L181–L184, doi:10.1086/187662, Bibcode1994ApJ...436L.181Z 
  84. Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters 262: L1–L5, doi:10.1086/183900, Bibcode1982ApJ...262L...1H 
  85. Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1 245: 482–494, doi:10.1086/158824, Bibcode1981ApJ...245..482G 
  86. Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin 12: 440, Bibcode1980BAAS...12..440P 
  87. 87.0 87.1 87.2 87.3 87.4 87.5 87.6 87.7 87.8 87.9 Johansson, L. E. B. et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics 130 (2): 227–256, Bibcode1984A&A...130..227J 
  88. Cernicharo, José et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters 806 (1): L3, doi:10.1088/2041-8205/806/1/L3, PMID 26722621, Bibcode2015ApJ...806L...3C 
  89. Guélin, M. et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics 363: L9–L12, Bibcode2000A&A...363L...9G 
  90. Guélin, M. et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics 426 (2): L49–L52, doi:10.1051/0004-6361:200400074, Bibcode2004A&A...426L..49G 
  91. 91.0 91.1 Snyder, Lewis E. et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters 61 (2): 77–115, doi:10.1103/PhysRevLett.22.679, Bibcode1969PhRvL..22..679S 
  92. Feuchtgruber, H. et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal 535 (2): L111–L114, doi:10.1086/312711, PMID 10835311, Bibcode2000ApJ...535L.111F 
  93. Berne, Olivier (26 June 2023). "Formation of the Methyl Cation by Photochemistry in a Protoplanetary Disk". Nature 621 (7977): 56–59. doi:10.1038/s41586-023-06307-x. PMID 37364766. Bibcode2023Natur.621...56B. https://www.nature.com/articles/s41586-023-06307-x. Retrieved 27 June 2023. 
  94. 94.0 94.1 Irvine, W. M. et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society 16: 877, Bibcode1984BAAS...16..877I 
  95. Pety, J. et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics 548: A68, doi:10.1051/0004-6361/201220062, Bibcode2012A&A...548A..68P 
  96. Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics 239: 319–325, Bibcode1990A&A...239..319M 
  97. Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1 438: 223–225, doi:10.1086/175066, Bibcode1995ApJ...438..223B 
  98. Thaddeus, P. et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal 677 (2): 1132–1139, doi:10.1086/528947, Bibcode2008ApJ...677.1132T 
  99. Wootten, Alwyn et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters 380: L79–L83, doi:10.1086/186178, Bibcode1991ApJ...380L..79W 
  100. Ridgway, S. T. et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature 264 (5584): 345, 346, doi:10.1038/264345a0, Bibcode1976Natur.264..345R 
  101. Ohishi, Masatoshi et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters 427 (1): L51–L54, doi:10.1086/187362, PMID 11539493, Bibcode1994ApJ...427L..51O 
  102. Cabezas, C.; Agúndez, M.; Marcelino, N.; Tercero, B.; Cuadrado, S.; Cernicharo, J. (October 2021). "Interstellar detection of the simplest aminocarbyne H2NC: an ignored but abundant molecule". Astronomy & Astrophysics 654: A45. doi:10.1051/0004-6361/202141491. Bibcode2021A&A...654A..45C. 
  103. Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics 244: 181–189, PMID 11538284, Bibcode1991A&A...244..181M 
  104. Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics 244: L21–L24, Bibcode1991A&A...244L..21G 
  105. Agúndez, M. et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics 577: L5, doi:10.1051/0004-6361/201526317, PMID 26722130, Bibcode2015A&A...577L...5A 
  106. Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1 334 (1): 175–181, doi:10.1086/166827, PMID 11538465, Bibcode1988ApJ...334..175M 
  107. Marcelino, Núria et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal 690 (1): L27–L30, doi:10.1088/0004-637X/690/1/L27, Bibcode2009ApJ...690L..27M 
  108. Brünken, S. et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics 516: A109, doi:10.1051/0004-6361/200912456, Bibcode2010A&A...516A.109B 
  109. Agúndez, M; Marcelino, N; Cernicharo, J (2018). "Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space". The Astrophysical Journal 861 (2): L22. doi:10.3847/2041-8213/aad089. PMID 30186588. Bibcode2018ApJ...861L..22A. 
  110. Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics 531: L8, doi:10.1051/0004-6361/201117170, Bibcode2011A&A...531L...8B. 
  111. Rivilla, V. M.; Jiménez-Serra, I.; García De La Concepción, J.; Martín-Pintado, J.; Colzi, L.; Rodríguez-Almeida, L. F.; Tercero, B.; Rico-Villas, F. et al. (2021). "Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone". Monthly Notices of the Royal Astronomical Society: Letters 506 (1): L79–L84. doi:10.1093/mnrasl/slab074. Bibcode2021MNRAS.506L..79R. 
  112. Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters 234: L143–L145, doi:10.1086/183126, Bibcode1979ApJ...234L.143F 
  113. 113.0 113.1 Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics 138 (1): L5–L8, Bibcode1984A&A...138L...5N 
  114. Halfen, D. T. et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters 702 (2): L124–L127, doi:10.1088/0004-637X/702/2/L124, Bibcode2009ApJ...702L.124H 
  115. Cabezas, C. et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal 775 (2): 133, doi:10.1088/0004-637X/775/2/133, Bibcode2013ApJ...775..133C 
  116. Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P. et al. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics 623: L13. doi:10.1051/0004-6361/201935040. Bibcode2019A&A...623L..13C. 
  117. Butterworth, Anna L. et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society 347 (3): 807–812, doi:10.1111/j.1365-2966.2004.07251.x, Bibcode2004MNRAS.347..807B 
  118. H. S. P. Müller (2013). "On Ammonium, NH4+, in the ISM". https://cdms.astro.uni-koeln.de/classic/molecules:ism:ammonium. 
  119. Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I. et al. (18 June 2013). "Detection of the Ammonium Ion in Space". The Astrophysical Journal 771 (1): L10. doi:10.1088/2041-8205/771/1/L10. Bibcode2013ApJ...771L..10C. 
  120. Lacy, J. H. et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal 376: 556–560, doi:10.1086/170304, Bibcode1991ApJ...376..556L 
  121. Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters 759 (2): L43–L46, doi:10.1088/2041-8205/759/2/L43, Bibcode2012ApJ...759L..43C 
  122. 122.0 122.1 122.2 122.3 122.4 122.5 122.6 122.7 Finley, Dave (August 7, 2006), "Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life", NRAO Press Release: 9, Bibcode2006nrao.pres....9., http://www.nrao.edu/pr/2006/gbtmolecules/, retrieved 2006-08-10 
  123. 123.0 123.1 123.2 Fossé, David et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal 552 (1): 168–174, doi:10.1086/320471, Bibcode2001ApJ...552..168F 
  124. Irvine, W. M. et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters 334 (2): L107–L111, doi:10.1086/185323, PMID 11538463, Bibcode1988ApJ...334L.107I 
  125. Dickens, J. E. et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal 479 (1 Pt 1): 307–12, doi:10.1086/303884, PMID 11541227, Bibcode1997ApJ...479..307D 
  126. McGuire, B.A. et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters 758 (2): L33–L38, doi:10.1088/2041-8205/758/2/L33, Bibcode2012ApJ...758L..33M 
  127. Ohishi, Masatoshi et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal 471 (1): L61–4, doi:10.1086/310325, PMID 11541244, Bibcode1996ApJ...471L..61O 
  128. Cernicharo, J. et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics 61 (2): L37–L40, doi:10.1051/0004-6361:20077415, Bibcode2007A&A...467L..37C 
  129. 129.0 129.1 129.2 Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal 552 (2): 654–663, doi:10.1086/320563, Bibcode2001ApJ...552..654L 
  130. 130.0 130.1 Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics 81 (1–2): 245–250, Bibcode1980A&A....81..245W 
  131. Kawaguchi, Kentarou et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal 386 (2): L51–L53, doi:10.1086/186290, Bibcode1992ApJ...386L..51K 
  132. Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal 163: L41. doi:10.1086/180663. Bibcode1971ApJ...163L..41Z. 
  133. Turner, B. E. et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal 201: L149–L152, doi:10.1086/181963, Bibcode1975ApJ...201L.149T 
  134. 134.0 134.1 134.2 Ligterink, Niels F. W. et al. (September 2020). "The Family of Amide Molecules toward NGC 6334I". The Astrophysical Journal 901 (1): 23. doi:10.3847/1538-4357/abad38. 37. Bibcode2020ApJ...901...37L. 
  135. Rivilla, Víctor M.; Martín-Pintado, Jesús; Jiménez-Serra, Izaskun; Martín, Sergio; Rodríguez-Almeida, Lucas F.; Requena-Torres, Miguel A.; Rico-Villas, Fernando; Zeng, Shaoshan et al. (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal 899 (2): L28. doi:10.3847/2041-8213/abac55. Bibcode2020ApJ...899L..28R. 
  136. Agúndez, M. et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics 579: L10, doi:10.1051/0004-6361/201526650, PMID 26543239, Bibcode2015A&A...579L..10A 
  137. Remijan, Anthony J. et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal 675 (2): L85–L88, doi:10.1086/533529, Bibcode2008ApJ...675L..85R 
  138. Bernath, P. F; Hinkle, K. H; Keady, J. J (1989). "Detection of C5 in the Circumstellar Shell of IRC+10216". Science 244 (4904): 562–4. doi:10.1126/science.244.4904.562. PMID 17769400. Bibcode1989Sci...244..562B. https://zenodo.org/record/1230984. 
  139. Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters 279: –L55–L58, doi:10.1086/184255, Bibcode1984ApJ...279L..55G 
  140. 140.0 140.1 140.2 Hollis, J. M. et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal 643 (1): L25–L28, doi:10.1086/505110, Bibcode2006ApJ...643L..25H, https://zenodo.org/record/1235698 
  141. Hollis, J. M. et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal 642 (2): 933–939, doi:10.1086/501121, Bibcode2006ApJ...642..933H 
  142. Zaleski, D. P. et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters 765 (1): L109, doi:10.1088/2041-8205/765/1/L10, Bibcode2013ApJ...765L..10Z 
  143. Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters 244: –L105, doi:10.1086/183490, Bibcode1981ApJ...244L.103B 
  144. 144.0 144.1 144.2 144.3 144.4 Remijan, Anthony J. et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal 632 (1): 333–339, doi:10.1086/432908, Bibcode2005ApJ...632..333R 
  145. "Complex Organic Molecules Discovered in Infant Star System". NRAO (Astrobiology Web). 8 April 2015. http://astrobiology.com/2015/04/complex-organic-molecules-discovered-in-infant-star-system.html. 
  146. First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  147. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters 234: L139–L142, doi:10.1086/183125, Bibcode1979ApJ...234L.139L 
  148. 148.0 148.1 148.2 Cernicharo, José et al. (2001), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters 546 (2): L123–L126, doi:10.1086/318871, Bibcode2001ApJ...546L.123C 
  149. Sanz-Novo, Miguel et al. (July 2023). "Discovery of the Elusive Carbonic Acid (HOCOOH) in Space". The Astrophysical Journal 954 (1): 3. doi:10.3847/1538-4357/ace523. Bibcode2023ApJ...954....3S. 
  150. Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics 335: L1–L4, Bibcode1998A&A...335L...1G 
  151. Irvine, W. M. et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters 335 (2): L89–L93, doi:10.1086/185346, PMID 11538462, Bibcode1988ApJ...335L..89I 
  152. 152.0 152.1 152.2 152.3 Agúndez, M. et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics 570: A45, doi:10.1051/0004-6361/201424542, Bibcode2014A&A...570A..45A 
  153. 153.0 153.1 "Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space", NRAO Press Release: 16, October 1, 2001, Bibcode2001nrao.pres...16., http://www.nrao.edu/pr/2001/vinylalco/, retrieved 2006-12-20 
  154. 154.0 154.1 Dickens, J. E. et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal 489 (2): 753–757, doi:10.1086/304821, PMID 11541726, Bibcode1997ApJ...489..753D 
  155. Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal 198: L85–L88, doi:10.1086/181818, Bibcode1975ApJ...198L..85K 
  156. McCarthy, M. C. et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal 652 (2): L141–L144, doi:10.1086/510238, Bibcode2006ApJ...652L.141M 
  157. Xue, Ci; Willis, Eric R.; Loomis, Ryan A.; Kelvin Lee, Kin Long; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Charnley, Steven B.; Cordiner, Martin A. et al. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal 900 (1): L9. doi:10.3847/2041-8213/aba631. Bibcode2020ApJ...900L...9X. 
  158. McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal 843 (2): L28. doi:10.3847/2041-8213/aa7ca3. Bibcode2017ApJ...843L..28M. 
  159. Halfen, D. T. et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal 812 (1): L5, doi:10.1088/2041-8205/812/1/L5, Bibcode2015ApJ...812L...5H 
  160. Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters 484 (1): L43–L48. doi:10.1093/mnrasl/slz002. Bibcode2019MNRAS.484L..43Z. 
  161. 161.0 161.1 Mehringer, David M. et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters 480 (1): L71, doi:10.1086/310612, Bibcode1997ApJ...480L..71M 
  162. 162.0 162.1 Lovas, F. J. et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters 637 (1): L37–L40, doi:10.1086/500431, Bibcode2006ApJ...637L..37L 
  163. McGuire, Brett A.; Burkhardt, Andrew M.; Loomis, Ryan A.; Shingledecker, Christopher N.; Kelvin Lee, Kin Long; Charnley, Steven B.; Cordiner, Martin A.; Herbst, Eric et al. (2020). "Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH2CN) in TMC-1". The Astrophysical Journal 900 (1): L10. doi:10.3847/2041-8213/aba632. Bibcode2020ApJ...900L..10M. 
  164. Hollis, J. M.; Lovas, F. J.; Jewell, P. R. (10 September 2000). "Interstellar Glycolaldehyde: The First Sugar". The Astrophysical Journal 540 (2): L107–L110. doi:10.1086/312881. Bibcode2000ApJ...540L.107H. 
  165. 165.0 165.1 Sincell, Mark (June 27, 2000), "The Sweet Signal of Sugar in Space", Science (American Association for the Advancement of Science), https://www.science.org/content/article/sweet-signal-sugar-space, retrieved 2016-01-14 
  166. Rivilla, Víctor M.; Colzi, Laura; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Megías, Andrés; Melosso, Mattia; Bizzocchi, Luca; López-Gallifa, Álvaro et al. (1 April 2022). "Precursors of the RNA World in Space: Detection of (Z)-1,2-ethenediol in the Interstellar Medium, a Key Intermediate in Sugar Formation". Astrophysical Journal Letters 929 (1): L11. doi:10.3847/2041-8213/ac6186. Bibcode2022ApJ...929L..11R. 
  167. Loomis, R. A. et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters 765 (1): L9, doi:10.1088/2041-8205/765/1/L9, Bibcode2013ApJ...765L...9L 
  168. 168.0 168.1 Zeng, Shaoshan; Jiménez-Serra, Izaskun; Rivilla, Víctor M.; Martín-Pintado, Jesús; Rodríguez-Almeida, Lucas F.; Tercero, Belén; de Vicente, Pablo; Rico-Villas, Fernando et al. (1 October 2021). "Probing the Chemical Complexity of Amines in the ISM: Detection of Vinylamine (C2H3NH2) and Tentative Detection of Ethylamine (C2H5NH2)". The Astrophysical Journal Letters 920 (2): L27. doi:10.3847/2041-8213/ac2c7e. Bibcode2021ApJ...920L..27Z. 
  169. Guelin, M. et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics 317: L37–L40, Bibcode1997A&A...317L...1G 
  170. Belloche, A. et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics 482 (1): 179–196, doi:10.1051/0004-6361:20079203, Bibcode2008A&A...482..179B 
  171. Remijan, Anthony J. et al. (2014), "Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]", Astrophysical Journal 783 (2): 77, doi:10.1088/0004-637X/783/2/77, Bibcode2014ApJ...783...77R 
  172. 172.0 172.1 Remijan, Anthony J. et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal 643 (1): L37–L40, doi:10.1086/504918, Bibcode2006ApJ...643L..37R 
  173. Snyder, L. E. et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal 191: L79–L82, doi:10.1086/181554, Bibcode1974ApJ...191L..79S 
  174. Zuckerman, B. et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal 196 (2): L99–L102, doi:10.1086/181753, Bibcode1975ApJ...196L..99Z 
  175. Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics 309: L26–L30, Bibcode1996A&A...309L..27C 
  176. Brünken, S. et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal 664 (1): L43–L46, doi:10.1086/520703, Bibcode2007ApJ...664L..43B 
  177. Remijan, Anthony J. et al. (2007), "Detection of C8H and Comparison with C8H toward IRC +10 216", Astrophysical Journal 664 (1): L47–L50, doi:10.1086/520704, Bibcode2007ApJ...664L..47R, https://pure.qub.ac.uk/ws/files/440005/apjl_664_L47.pdf 
  178. 178.0 178.1 178.2 Bell, M. B. et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters 483 (1): L61–L64, doi:10.1086/310732, Bibcode1997ApJ...483L..61B 
  179. Kroto, H. W. et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal 219: L133–L137, doi:10.1086/182623, Bibcode1978ApJ...219L.133K 
  180. Marcelino, N. et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal 665 (2): L127–L130, doi:10.1086/521398, Bibcode2007ApJ...665L.127M 
  181. Kolesniková, L. et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters 784 (1): L7, doi:10.1088/2041-8205/784/1/L7, Bibcode2014ApJ...784L...7K 
  182. Snyder, Lewis E. et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal 578 (1): 245–255, doi:10.1086/342273, Bibcode2002ApJ...578..245S 
  183. Hollis, J. M. et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal 571 (1): L59–L62, doi:10.1086/341148, Bibcode2002ApJ...571L..59H 
  184. Hollis, J. M. (2005), "Complex Molecules and the GBT: Is Isomerism the Key?", Complex Molecules and the GBT: Is Isomerism the Key?, Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe, Asilomar, CA, pp. 119–127, http://www.astro.uni-koeln.de/site/vorhersagen/molecules/ism/Hollis_Asilomar.pdf 
  185. McGuire, Brett A; Shingledecker, Christopher N; Willis, Eric R; Burkhardt, Andrew M; El-Abd, Samer; Motiyenko, Roman A; Brogan, Crystal L; Hunter, Todd R et al. (2017). "ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH)". The Astrophysical Journal 851 (2): L46. doi:10.3847/2041-8213/aaa0c3. Bibcode2017ApJ...851L..46M. 
  186. McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. (2016). "Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)". Science 352 (6292): 1449–52. doi:10.1126/science.aae0328. PMID 27303055. Bibcode2016Sci...352.1449M. 
  187. Rivilla, Víctor M.; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Briones, Carlos; Rodríguez-Almeida, Lucas F.; Rico-Villas, Fernando; Tercero, Belén; Zeng, Shaoshan et al. (2021-06-01). "Discovery in space of ethanolamine, the simplest phospholipid head group" (in en). Proceedings of the National Academy of Sciences 118 (22). doi:10.1073/pnas.2101314118. ISSN 0027-8424. PMID 34031247. Bibcode2021PNAS..11801314R. 
  188. 188.0 188.1 Belloche, A. et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics 499 (1): 215–232, doi:10.1051/0004-6361/200811550, Bibcode2009A&A...499..215B 
  189. Tercero, B. et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters 770 (1): L13, doi:10.1088/2041-8205/770/1/L13, Bibcode2013ApJ...770L..13T 
  190. Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space". BBC News. https://www.bbc.com/news/science-environment-29368984. 
  191. Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science 345 (6204): 1584–1587. doi:10.1126/science.1256678. PMID 25258074. Bibcode2014Sci...345.1584B. 
  192. McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. (12 January 2018). "Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium". Science 359 (6372): 202–205. doi:10.1126/science.aao4890. PMID 29326270. Bibcode2018Sci...359..202M. 
  193. Iglesias-Groth, S. (August 2023). "A search for tryptophan in the gas of the IC 348 star cluster of the Perseus molecular cloud". Monthly Notices of the Royal Astronomical Society 523 (2): 2876–2886. doi:10.1093/mnras/stad1535. Bibcode2023MNRAS.523.2876I. 
  194. 194.0 194.1 Cami, Jan et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science 329 (5996): 1180–2, doi:10.1126/science.1192035, PMID 20651118, Bibcode2010Sci...329.1180C 
  195. Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature 369 (6478): 296–298, doi:10.1038/369296a0, Bibcode1994Natur.369..296F. 
  196. Campbell, Ewen K.; Holz, Mathias; Gerlich, Dieter; Maier, John P. (2015), "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands", Nature 523 (7560): 322–323, doi:10.1038/nature14566, PMID 26178962, Bibcode2015Natur.523..322C 
  197. Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics 550: L4, doi:10.1051/0004-6361/201220730, Bibcode2013A&A...550L...4B 
  198. 198.0 198.1 Lacour, S. et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics 430 (3): 967–977, doi:10.1051/0004-6361:20041589, Bibcode2005A&A...430..967L 
  199. 199.0 199.1 199.2 199.3 Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science 50 (12–13): 1267–1273, doi:10.1016/S0032-0633(02)00093-4, Bibcode2002P&SS...50.1267C 
  200. Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series 70: 813–831, doi:10.1086/191358, Bibcode1989ApJS...70..813G 
  201. Butner, H. M. et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal 659 (2): L137–L140, doi:10.1086/517883, Bibcode2007ApJ...659L.137B 
  202. 202.0 202.1 202.2 202.3 Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters 225: L75–L79, doi:10.1086/182797, Bibcode1978ApJ...225L..75T 
  203. Melosso, M.; Bizzocchi, L.; Sipilä, O.; Giuliano, B. M.; Dore, L.; Tamassia, F.; Martin-Drumel, M.-A.; Pirali, O. et al. (2020). "First detection of NHD and ND2 in the interstellar medium". Astronomy & Astrophysics 641: A153. doi:10.1051/0004-6361/202038490. Bibcode2020A&A...641A.153M. 
  204. Lis, D. C. et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal 571 (1): L55–L58, doi:10.1086/341132, Bibcode2002ApJ...571L..55L. 
  205. Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics 403 (2): L25–L28, doi:10.1051/0004-6361:20030297, Bibcode2003A&A...403L..25H. 
  206. Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters 362: L29–L33, doi:10.1086/185840, Bibcode1990ApJ...362L..29T. 
  207. 207.0 207.1 Coutens, A. (9 May 2016). "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium". Astronomy & Astrophysics 590: L6. doi:10.1051/0004-6361/201628612. Bibcode2016A&A...590L...6C. 
  208. Cernicharo, J. et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters 771 (1): L10, doi:10.1088/2041-8205/771/1/L10, Bibcode2013ApJ...771L..10C 
  209. Doménech, J. L. et al. (2013), "Improved Determination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters 771 (1): L11, doi:10.1088/2041-8205/771/1/L10, Bibcode2013ApJ...771L..11D 
  210. Gerin, M. et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics 253 (2): L29–L32, Bibcode1992A&A...253L..29G. 
  211. Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal 627 (2): L117–L120, doi:10.1086/432415, Bibcode2005ApJ...627L.117M. 
  212. Agúndez, M. et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics 485 (3): L33, doi:10.1051/0004-6361:200810193, Bibcode2008A&A...485L..33A 
  213. Gupta, H. et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+", Astrophysical Journal Letters 778 (1): L1, doi:10.1088/2041-8205/778/1/L1, Bibcode2013ApJ...778L...1G, http://authors.library.caltech.edu/43247/1/2041-8205_778_1_L1.pdf 
  214. Snyder, L. E. et al. (2005), "A Rigorous Attempt to Verify Interstellar Glycine", Astrophysical Journal 619 (2): 914–930, doi:10.1086/426677, Bibcode2005ApJ...619..914S. 
  215. Kuan, Y. J. et al. (2003), "Interstellar Glycine", Astrophysical Journal 593 (2): 848–867, doi:10.1086/375637, Bibcode2003ApJ...593..848K. 
  216. Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters 624 (1): L33–L36, doi:10.1086/430407, Bibcode2005ApJ...624L..33W 
  217. Apponi, A. J.; Halfen, D. T.; Ziurys, L. M.; Hollis, J. M.; Remijan, Anthony J.; Lovas, F. J. (2006). "Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone". The Astrophysical Journal 643 (1): L29–L32. doi:10.1086/504979. Bibcode2006ApJ...643L..29A. 
  218. Fuchs, G. W. et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics 444 (2): 521–530, doi:10.1051/0004-6361:20053599, Bibcode2005A&A...444..521F 
  219. Iglesias-Groth, S. et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters 685 (1): L55–L58, doi:10.1086/592349, Bibcode2008ApJ...685L..55I  - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  220. García-Hernández, D. A. et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters 737 (2): L30, doi:10.1088/2041-8205/737/2/L30, Bibcode2011ApJ...737L..30G. 
  221. 221.0 221.1 Battersby, S. (2004). "Space molecules point to organic origins". New Scientist. https://www.newscientist.com/article/dn4552-space-molecules-point-to-organic-origins.html. 
  222. Iglesias-Groth, S. et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society 407 (4): 2157–2165, doi:10.1111/j.1365-2966.2010.17075.x, Bibcode2010MNRAS.407.2157I 

Notes

  1. On Earth, the dominant isotope of argon is 40Ar, so ArH+ would have a mass of 41 amu. However, the interstellar detection was of the 36ArH+ isotopologue, which has a mass of 37 amu.

External links


Template:Featured list is only for Wikipedia:Featured lists.