Chemistry:Ytterbium(II) iodide

From HandWiki
Ytterbium(II) iodide
Kristallstruktur Cadmiumiodid.png
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 687-891-5
Properties
I2Yb
Molar mass 426.854 g·mol−1
Appearance yellow solid[1]
Melting point 780 °C (1,440 °F; 1,050 K)[1] (decomposes)
Structure
Trigonal
P3m1 (No. 164)
a = 448 pm, c = 696 pm
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Ytterbium(II) iodide is an iodide of ytterbium, with the chemical formula of YbI2. It is a yellow solid.

Preparation

Ytterbium(II) iodide can be prepared by heating ytterbium(III) iodide:[1]

[math]\displaystyle{ \mathrm{2\ YbI_3\ \xrightarrow []{\Delta\ T}\ 2\ YbI_2\ +\ I_2} }[/math]

It can also be prepared by reacting metallic ytterbium with 1,2-diiodoethane in tetrahydrofuran:[2]

[math]\displaystyle{ \mathrm{Yb\ +\ ICH_2CH_2I\ \xrightarrow []{THF} \ YbI_2\ +\ H_2C=CH_2} }[/math]

Although the reaction takes place at room temperature, due to the sensitivity of the reagents it is necessary to work anhydrous and under inert gas. Otherwise, if oxygen is present, rapid oxidation to ytterbium(III) takes place. This can be visually recognized by the color change from green to yellow solution.

Properties and uses

Ytterbium(II) iodide is a yellow solid that is very sensitive to air and moisture and is rapidly oxidized to ytterbium(III). It reacts with water to produce hydrogen gas and basic iodides, and reacts violently with acids.[1] Ytterbium(II) iodide sinters at 0.01 Torr from about 780 °C and gives a viscous melt at about 920 °C. It begins to disproportionate into ytterbium and ytterbium(III) iodide. At around 800 °C, a yellow sublimate of ytterbium(II) iodide is observed on the glass walls; this partly obscures the disproportionation. The melting point can therefore only be determined imprecisely.[1][3]

Like samarium(II) iodide (SmI2), ytterbium(II) iodide is a reagent used in organic chemical reactions.[2]

References

  1. 1.0 1.1 1.2 1.3 1.4 G. Jantsch; N. Skalla; H. Jawurek (1931-11-10). "Zur Kenntnis der Halogenide der seltenen Erden. V. Über die Halogenide des Ytterbiums" (in en). Zeitschrift für anorganische und allgemeine Chemie 201 (1): 207–220. doi:10.1002/zaac.19312010119. 
  2. 2.0 2.1 Pierre-Marie Girard; Jean Louis Namy; Henri B. Kagan (April 1980). "Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents" (in en). Journal of the American Chemical Society 102 (8): 2693–2698. doi:10.1021/ja00528a029. ISSN 0002-7863. 
  3. Gmelins Handbuch der anorganischen Chemie, System Nr. 39, Band C 6, S. 199–200.

Further reading

  • Kagan, Henri B.; Namy, Jean Louis (1986). "Tetrahedron report number 213: Lanthanides in organic synthesis". Tetrahedron 42 (24): 6573–6614. doi:10.1016/s0040-4020(01)82098-6. ISSN 0040-4020. 
  • Steel, Patrick G. (2001-10-18). "Recent developments in lanthanide mediated organic synthesis". Journal of the Chemical Society, Perkin Transactions 1 (21): 2727–2751. doi:10.1039/a908189e. ISSN 1472-7781. 
HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 YI3 ZrI4 NbI5 Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   HfI4 TaI5 W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr RaI2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf EsI3 Fm Md No Lr