Chemistry:Titanium tetraiodide

From HandWiki
Titanium tetraiodide
Titanium tetraiodide
Titanium tetraiodide
Names
IUPAC name
Titanium(IV) iodide
Other names
Titanium tetraiodide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 231-754-0
Properties
TiI4
Molar mass 555.485 g/mol
Appearance red-brown crystals
Density 4.3 g/cm3
Melting point 150 °C (302 °F; 423 K)
Boiling point 377 °C (711 °F; 650 K)
hydrolysis
Solubility in other solvents soluble in CH2Cl2
CHCl3
CS2
Structure
cubic (a = 12.21 Å)
tetrahedral
0 D
Hazards
Main hazards violent hydrolysis
corrosive
GHS pictograms GHS05: Corrosive
GHS Signal word Danger
H314
P260, P264, P280, P301+330+331, P303+361+353, P304+340, P305+351+338, P310, P321, P363, P405, P501
Related compounds
Other anions
Titanium(IV) bromide
Titanium(IV) chloride
Titanium(IV) fluoride
Other cations
Silicon tetraiodide
Zirconium(IV) iodide
Hafnium(IV) iodide
Related compounds
Titanium(III) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Titanium tetraiodide is an inorganic compound with the formula TiI4. It is a black volatile solid, first reported by Rudolph Weber in 1863.[2] It is an intermediate in the van Arkel–de Boer process for the purification of titanium.

Physical properties

TiI4 is a rare molecular binary metal iodide, consisting of isolated molecules of tetrahedral Ti(IV) centers. The Ti-I distances are 261 pm.[3] Reflecting its molecular character, TiI4 can be distilled without decomposition at one atmosphere; this property is the basis of its use in the van Arkel–de Boer process. The difference in melting point between TiCl4 (m.p. -24 °C) and TiI4 (m.p. 150 °C) is comparable to the difference between the melting points of CCl4 (m.p. -23 °C) and CI4 (m.p. 168 °C), reflecting the stronger intermolecular van der Waals bonding in the iodides.

Two polymorphs of TiI4 exist, one of which is highly soluble in organic solvents. In the less soluble cubic form, the Ti-I distances are 261 pm.[3]

Production

Three methods are well known: 1) From the elements, typically using a tube furnace at 425 °C:[4]

Ti + 2 I2 → TiI4

This reaction can be reversed to produce highly pure films of Ti metal.[5]

2) Exchange reaction from titanium tetrachloride and HI.

TiCl4 + 4 HI → TiI4 + 4 HCl

3) Oxide-iodide exchange from aluminium iodide.

3 TiO2 + 4 AlI3 → 3 TiI4 + 2 Al2O3

Reactions

Like TiCl4 and TiBr4, TiI4 forms adducts with Lewis bases, and it can also be reduced. When the reduction is conducted in the presence of Ti metal, one obtains polymeric Ti(III) and Ti(II) derivatives such as CsTi2I7 and the chain CsTiI3, respectively.[6]

TiI4 exhibits extensive reactivity toward alkenes and alkynes resulting in organoiodine derivatives. It also effects pinacol couplings and other C-C bond-forming reactions.[7]

References

  1. "Titanium tetraiodide" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/111328#section=Safety-and-Hazards. 
  2. Weber, R. (1863). "Ueber die isomeren Modificationen der Titansäure und über einige Titanverbindungen". Annalen der Physik 120 (10): 287–294. doi:10.1002/andp.18631961003. Bibcode1863AnP...196..287W. http://gallica.bnf.fr/ark:/12148/bpt6k15205n/f305.image.r=poggendorff.langFR. 
  3. 3.0 3.1 Tornqvist, E. G. M.; Libby, W. F. (1979). "Crystal Structure, Solubility, and Electronic Spectrum of Titanium Tetraiodide". Inorganic Chemistry 18 (7): 1792–1796. doi:10.1021/ic50197a013. 
  4. Lowry, R. N.; Fay, R. C. (1967). Titanium(IV) Iodide. Inorganic Syntheses. 10. pp. 1. doi:10.1002/9780470132418.ch1. ISBN 9780470132418. 
  5. Blumenthal, W. B.; Smith, H. (1950). "Titanium tetraiodide, Preparation and Refining". Industrial and Engineering Chemistry 42 (2): 249. doi:10.1021/ie50482a016. 
  6. Jongen, L.; Gloger, T.; Beekhuizen, J.; Meyer, G. (2005). "Divalent Titanium: The Halides ATiX3 (A = K, Rb, Cs; X = Cl, Br, I)". Zeitschrift für anorganische und allgemeine Chemie 631 (2–3): 582. doi:10.1002/zaac.200400464. 
  7. Shimizu, M.; Hachiya, I. (2014). "Chemoselective Reductions and Iodinations using Titanium Tetraiodide". Tetrahedron Letters 55 (17): 2781–2788. doi:10.1016/j.tetlet.2014.03.052. 
HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 YI3 ZrI4 NbI5 Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   HfI4 TaI5 W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr RaI2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf EsI3 Fm Md No Lr