Chemistry:Samarium(II) iodide

From HandWiki
Samarium(II) iodide
Ball-and-stick model of a samarium(II) iodide-THF complex
Names
IUPAC name
samarium(II) iodide
Other names
samarium diiodide
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
SmI2
Molar mass 404.16 g/mol
Appearance green solid
Melting point 520 °C (968 °F; 793 K)
Hazards
Flash point Non-flammable
Related compounds
Other anions
Samarium(II) chloride
Samarium(II) bromide
Other cations
Samarium(III) iodide
Europium(II) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and solutions are green as well. It is a strong one-electron reducing agent that is used in organic synthesis.

Structure

In samarium(II) iodide, the metal centers are seven-coordinate with a face-capped octahedral geometry.[1]

Structure of the samarium (II) iodide tetrahydrofuran complex

In its ether adducts, samarium remains heptacoordinate with five ether and two terminal iodide ligands.[2]

Preparation

Samarium iodide is easily prepared in nearly quantitative yields from samarium metal and either diiodomethane or 1,2-diiodoethane.[3] When prepared in this way, its solutions is most often used without purification of the inorganic reagent.

[math]\displaystyle{ \begin{array}{cl}{}\\ \ce{{Sm} + ICH2I -\gt [\ce{THF}] SmI2} + 0.5\ce{H2C=CH2} \\ \ce{{Sm} + I(CH2)2I -\gt [\ce{THF}] {SmI2} + H2C=CH2} \\ {}\end{array} }[/math]

 

 

 

 

()

Solid, solvent-free SmI2 forms by high temperature decomposition of samarium(III) iodide (SmI3).[4][5][6]

Reactions

Samarium(II) iodide is a powerful reducing agent – for example it rapidly reduces water to hydrogen.[1] It is available commercially as a dark blue 0.1 M solution in THF. Although used typically in superstoichiometric amounts, catalytic applications have been described.[7]

Organic chemistry

Main page: Chemistry:Reductions with samarium(II) iodide

Samarium(II) iodide is a reagent for carbon-carbon bond formation, for example in a Barbier reaction (similar to the Grignard reaction) between a ketone and an alkyl iodide to form a tertiary alcohol:[8]

R1I + R2COR3 → R1R2C(OH)R3
Barbier reaction using SmI2

Typical reaction conditions use SmI2 in THF in the presence of catalytic NiI2.

Esters react similarly (adding two R groups), but aldehydes give by-products. The reaction is convenient in that it is often very rapid (5 minutes or less in the cold). Although samarium(II) iodide is considered a powerful single-electron reducing agent, it does display remarkable chemoselectivity among functional groups. For example, sulfones and sulfoxides can be reduced to the corresponding sulfide in the presence of a variety of carbonyl-containing functionalities (such as esters, ketones, amides, aldehydes, etc.). This is presumably due to the considerably slower reaction with carbonyls as compared to sulfones and sulfoxides. Furthermore, hydrodehalogenation of halogenated hydrocarbons to the corresponding hydrocarbon compound can be achieved using samarium(II) iodide. Also, it can be monitored by the color change that occurs as the dark blue color of SmI2 in THF discharges to a light yellow once the reaction has occurred. The picture shows the dark colour disappearing immediately upon contact with the Barbier reaction mixture.

Work-up is with dilute hydrochloric acid, and the samarium is removed as aqueous Sm3+.

Carbonyl compounds can also be coupled with simple alkenes to form five, six or eight membered rings.[9]

Tosyl groups can be removed from N-tosylamides almost instantaneously, using SmI2 in conjunction with distilled water and an anime base. The reaction is even effective for deprotection of sensitive substrates such as aziridines:[10]

Removal of a tosyl group from an N-tosylamide using SmI2

In the Markó-Lam deoxygenation, an alcohol could be almost instantaneously deoxygenated by reducing their toluate ester in presence of SmI2.

Markó-Lam deoxygenation using SmI2

The applications of SmI2 have been reviewed.[11][12][13] The book Organic Synthesis Using Samarium Diiodide, published in 2009, gives a detailed overview of reactions mediated by SmI2.[14]

References

  1. 1.0 1.1 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  2. William J. Evans; Tammy S. Gummersheimer; Joseph W. Ziller (1995). "Coordination Chemistry of Samarium Diiodide with Ethers Including the Crystal Structure of Tetrahydrofuran-Solvated Samarium Diiodide, SmI2(THF)5". J. Am. Chem. Soc. 117 (35): 8999–9002. doi:10.1021/ja00140a016. 
  3. P. Girard, J. L. Namy and H. B. Kagan (1980). "Divalent Lanthanide Derivatives in Organic Synthesis. 1. Mild Preparation of SmI2 and YbI2 and Their Use as Reducing or Coupling Agents". J. Am. Chem. Soc. 102 (8): 2693–2698. doi:10.1021/ja00528a029. 
  4. G. Jantsch, N. Skalla: "Zur Kenntnis der Halogenide der seltenen Erden. IV. – Über Samarium(II)jodid und den thermischen Abbau des Samarium(III)jodids", Zeitschrift für Allgemeine und Anorganische Chemie, 1930, 193, 391–405; doi:10.1002/zaac.19301930132.
  5. G. Jantsch: "Thermischer Abbau von seltenen Erd(III)halogeniden", Die Naturwissenschaften, 1930, 18 (7), 155–155; doi:10.1007/BF01501667.
  6. Gmelins Handbuch der anorganischen Chemie, System Nr. 39, Band C 6, p. 192–194.
  7. Huang, Huan-Ming; McDouall, Joseph J. W.; Procter, David J. (2019). "SmI2-catalysed cyclization cascades by radical relay". Nature Catalysis 2 (3): 211–218. doi:10.1038/s41929-018-0219-x. https://www.research.manchester.ac.uk/portal/en/publications/smi2catalyzed-cyclization-cascades-by-radical-relay(d64241b6-d89c-4ee2-b1a1-0eec1827ac0a).html. 
  8. Machrouhi, Fouzia; Hamann, Béatrice; Namy, Jean-Louis; Kagan, Henri B. (1996). "Improved Reactivity of Diiodosamarium by Catalysis with Transition Metal Salts". Synlett 1996 (7): 633–634. doi:10.1055/s-1996-5547. 
  9. Molander, G. A.; McKiie, J. A. (1992). "Samarium(II) iodide-induced reductive cyclization of unactivated olefinic ketones. Sequential radical cyclization/intermolecular nucleophilic addition and substitution reactions". J. Org. Chem. 57 (11): 3132–3139. doi:10.1021/jo00037a033. 
  10. Ankner, Tobias; Göran Hilmersson (2009). "Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water". Organic Letters (American Chemical Society) 11 (3): 503–506. doi:10.1021/ol802243d. PMID 19123840. 
  11. Patrick G. Steel (2001). "Recent developments in lanthanide mediated organic synthesis". J. Chem. Soc., Perkin Trans. 1 (21): 2727–2751. doi:10.1039/a908189e. 
  12. Molander, G. A.; Harris, C. R. (1996). "Sequencing Reactions with Samarium(II) Iodide". Chem. Rev. 96 (1): 307–338. doi:10.1021/cr950019y. PMID 11848755. 
  13. K. C. Nicolaou; Shelby P. Ellery; Jason S. Chen (2009). "Samarium Diiodide Mediated Reactions in Total Synthesis". Angew. Chem. Int. Ed. 48 (39): 7140–7165. doi:10.1002/anie.200902151. PMID 19714695. 
  14. Procter, David J.; Flowers,II, Robert A.; Skydstrup, Troels (2009). Organic Synthesis Using Samarium Diiodide. Royal Society of Chemistry. ISBN 978-1-84755-110-8. 
HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 YI3 ZrI4 NbI5 Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   HfI4 TaI5 W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr RaI2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf EsI3 Fm Md No Lr