From HandWiki
Short description: Bosonic superpartner of a fermion

In supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion.[1][2] Each particle has a superpartner with spin that differs by 1/2. Fermions in the SM have spin-1/2 and, therefore, sfermions have spin 0.[3][4]

The name 'sfermion' was formed by the general rule of prefixing an 's' to the name of its superpartner, denoting that it is a scalar particle with spin 0. For instance, the electron's superpartner is the selectron and the top quark's superpartner is the stop squark.

One corollary from supersymmetry is that sparticles have the same gauge numbers as their SM partners. This means that sparticle–particle pairs have the same color charge, weak isospin charge, and hypercharge (and consequently electric charge). Unbroken supersymmetry also implies that sparticle–particle pairs have the same mass. This is evidently not the case, since these sparticles would have already been detected. Thus, sparticles must have different masses from the particle partners and supersymmetry is said to be broken.[5][6]

Fundamental sfermions


Squarks (also quarkinos)[7] are the superpartners of quarks. These include the sup squark, sdown squark, scharm squark, sstrange squark, stop squark, and sbottom squark.

Squark Symbol Associated quark Symbol
First generation
Sup squark [math]\displaystyle{ \tilde{u} }[/math] Up quark [math]\displaystyle{ u }[/math]
Sdown squark [math]\displaystyle{ \tilde{d} }[/math] Down quark [math]\displaystyle{ d }[/math]
Second generation
Scharm squark [math]\displaystyle{ \tilde{c} }[/math] Charm quark [math]\displaystyle{ c }[/math]
Sstrange squark [math]\displaystyle{ \tilde{s} }[/math] Strange quark [math]\displaystyle{ s }[/math]
Third generation
Stop squark [math]\displaystyle{ \tilde{t} }[/math] Top quark [math]\displaystyle{ t }[/math]
Sbottom squark [math]\displaystyle{ \tilde{b} }[/math] Bottom quark [math]\displaystyle{ b }[/math]


Sleptons are the superpartners of leptons. These include the selectron, smuon, stau, and their corresponding sneutrino flavors.[8]

Slepton Symbol Associated lepton Symbol
First generation
Selectron [math]\displaystyle{ \tilde{e} }[/math] Electron [math]\displaystyle{ e }[/math]
Selectron sneutrino [math]\displaystyle{ \tilde{\nu}_e }[/math] Electron neutrino [math]\displaystyle{ \nu_e }[/math]
Second generation
Smuon [math]\displaystyle{ \tilde{\mu} }[/math] Muon [math]\displaystyle{ \mu }[/math]
Smuon sneutrino [math]\displaystyle{ \tilde{\nu}_\mu }[/math] Muon neutrino [math]\displaystyle{ \nu_\mu }[/math]
Third generation
Stau [math]\displaystyle{ \tilde{\tau} }[/math] Tau [math]\displaystyle{ \tau }[/math]
Stau sneutrino [math]\displaystyle{ \tilde{\nu}_\tau }[/math] Tau neutrino [math]\displaystyle{ \nu_\tau }[/math]

See also


  1. He-sheng, Chen; Dongsheng, Du; Weiguo, Li (2005) (in en). High Energy Physics: Ichep 2004 - Proceedings Of The 32nd International Conference (In 2 Volumes). World Scientific. p. 109. ISBN 9789814481274. Retrieved 30 September 2019. 
  2. Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004) (in en). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop. World Scientific. ISBN 9789814485586. Retrieved 30 September 2019. 
  3. Baer, Howard; Tata, Xerxes (2006) (in en). Weak Scale Supersymmetry: From Superfields to Scattering Events. Cambridge University Press. p. 129. ISBN 9781139455077. Retrieved 30 September 2019. 
  4. Cline, David B (1997) (in en). Flavor-changing Neutral Currents: Present And Future Studies: Proceedings Of The Symposium. World Scientific. p. 229. ISBN 9789814545822. Retrieved 30 September 2019. 
  5. Seamus, Hegarty; Keith, Potter; Emanuele, Quercigh (1992) (in en). Joint International Lepton-photon Symposium And Europhysics Conference On High Energy Physics - Lp-hep '91 (In 2 Volumes). World Scientific. p. 500. ISBN 9789814555531. Retrieved 30 September 2019. 
  6. Khalil, Shaaban; Moretti, Stefano (2017) (in en). Supersymmetry Beyond Minimality: From Theory to Experiment. CRC Press. ISBN 9781315350875. Retrieved 30 September 2019. 
  7. Khlopov, Maxim Yu. (1999) (in en). Cosmoparticle Physics. World Scientific. p. 53. ISBN 978-981-02-3188-0. Retrieved 23 June 2020. 
  8. Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004) (in en). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop. World Scientific. p. 442. ISBN 9789814485586. Retrieved 30 September 2019.