Biology:RING finger domain
Zinc finger, C3HC4 type (RING finger) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Structure of the C3HC4 domain.[1] Zinc ions are black spheres, coordinated by cysteines residues (blue). | |||||||||
Identifiers | |||||||||
Symbol | zf-C3HC4 | ||||||||
Pfam | PF00097 | ||||||||
InterPro | IPR001841 | ||||||||
SMART | SM00184 | ||||||||
PROSITE | PDOC00449 | ||||||||
SCOP2 | 1chc / SCOPe / SUPFAM | ||||||||
|
In molecular biology, a RING (short for Really Interesting New Gene) finger domain is a protein structural domain of zinc finger type which contains a C3HC4 amino acid motif which binds two zinc cations (seven cysteines and one histidine arranged non-consecutively).[2][3][4][5] This protein domain contains 40 to 60 amino acids. Many proteins containing a RING finger play a key role in the ubiquitination pathway.
Zinc fingers
Zinc finger (Znf) domains are relatively small protein motifs that bind one or more zinc atoms, and which usually contain multiple finger-like protrusions that make tandem contacts with their target molecule. They bind DNA, RNA, protein and/or lipid substrates.[6][7][8][9][10] Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing.[11] Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
Some Zn finger domains have diverged such that they still maintain their core structure, but have lost their ability to bind zinc, using other means such as salt bridges or binding to other metals to stabilise the finger-like folds.
Function
Many RING finger domains simultaneously bind ubiquitination enzymes and their substrates and hence function as ligases. Ubiquitination in turn targets the substrate protein for degradation.[12][13][14]
Structure
The RING finger domain has the consensus sequence C-X2-C-X[9-39]-C-X[1-3]-H-X[2-3]-C-X2-C-X[4-48]-C-X2-C.[2] where:
- C is a conserved cysteine residue involved zinc coordination,
- H is a conserved histidine involved in zinc coordination,
- Zn is zinc atom, and
- X is any amino acid residue.
The following is a schematic representation of the structure of the RING finger domain:[2]
x x x x x x x x x x x x x x x x x x C C C C x \ / x x \ / x x Zn x x Zn x C / \ H C / \ C x x x x x x x x x x x x x x x x x
Examples
Examples of human genes which encode proteins containing a RING finger domain include:
AMFR, BARD1, BBAP, BFAR, BIRC2, BIRC3, BIRC7, BIRC8, BMI1, BRAP, BRCA1, CBL, CBLB, CBLC, CBLL1, CHFR, CNOT4, COMMD3, DTX1, DTX2, DTX3, DTX3L, DTX4, DZIP3, HCGV, HLTF, HOIL-1, IRF2BP2, LNX1, LNX2, LONRF1, LONRF2, LONRF3, MARCH1, MARCH10, MARCH2, MARCH3, MARCH4, MARCH5, MARCH6, MARCH7, MARCH8, MARCH9, MDM2, MEX3A, MEX3B, MEX3C, MEX3D, MGRN1, MIB1, MID1, MID2, MKRN1, MKRN2, MKRN3, MKRN4, MNAT1, MYLIP, NFX1, NFX2, PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6, PDZRN3, PDZRN4, PEX10, PHRF1, PJA1, PJA2, PML, PML-RAR, PXMP3, RAD18, RAG1, RAPSN, RBCK1, RBX1, RC3H1, RC3H2, RCHY1, RFP2, RFPL1, RFPL2, RFPL3, RFPL4B, RFWD2, RFWD3, RING1, RNF2, RNF4, RNF5, RNF6, RNF7, RNF8, RNF10, RNF11, RNF12, RNF13, RNF14, RNF19A, RNF20, RNF24, RNF25, RNF26, RNF32, RNF38, RNF39, RNF40, RNF41, RNF43, RNF44, RNF55, RNF71, RNF103, RNF111, RNF113A, RNF113B, RNF121, RNF122, RNF123, RNF125, RNF126, RNF128, RNF130, RNF133, RNF135, RNF138, RNF139, RNF141, RNF144A, RNF145, RNF146, RNF148, RNF149, RNF150, RNF151, RNF152, RNF157, RNF165, RNF166, RNF167, RNF168, RNF169, RNF170, RNF175, RNF180, RNF181, RNF182, RNF185, RNF207, RNF213, RNF215, RNFT1, SH3MD4, SH3RF1, SH3RF2, SYVN1, TIF1, TMEM118, TOPORS, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRAF7, TRAIP, TRIM2, TRIM3, TRIM4, TRIM5, TRIM6, TRIM7, TRIM8, TRIM9, TRIM10, TRIM11, TRIM13, TRIM15, TRIM17, TRIM21, TRIM22, TRIM23, TRIM24, TRIM25, TRIM26, TRIM27, TRIM28, TRIM31, TRIM32, TRIM33, TRIM34, TRIM35, TRIM36, TRIM38, TRIM39, TRIM40, TRIM41, TRIM42, TRIM43, TRIM45, TRIM46, TRIM47, TRIM48, TRIM49, TRIM50, TRIM52, TRIM54, TRIM55, TRIM56, TRIM58, TRIM59, TRIM60, TRIM61, TRIM62, TRIM63, TRIM65, TRIM67, TRIM68, TRIM69, TRIM71, TRIM72, TRIM73, TRIM74, TRIML1, TTC3, UHRF1, UHRF2, VPS11, VPS8, ZNF179, ZNF294, ZNF313, ZNF364, ZNF451, ZNF650, ZNFB7, ZNRF1, ZNRF2, ZNRF3, ZNRF4, and ZSWIM2.
References
- ↑ "Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger". J. Mol. Biol. 237 (2): 201–11. March 1994. doi:10.1006/jmbi.1994.1222. PMID 8126734.
- ↑ 2.0 2.1 2.2 "The RING finger domain: a recent example of a sequence-structure family". Curr. Opin. Struct. Biol. 6 (3): 395–401. 1996. doi:10.1016/S0959-440X(96)80060-1. PMID 8804826.
- ↑ "New genes in the class II region of the human major histocompatibility complex". Genomics 10 (2): 417–24. 1991. doi:10.1016/0888-7543(91)90327-B. PMID 1906426.
- ↑ "A novel cysteine-rich sequence motif". Cell 64 (3): 483–4. 1991. doi:10.1016/0092-8674(91)90229-R. PMID 1991318.
- ↑ "Identification and preliminary characterization of a protein motif related to the zinc finger". Proc. Natl. Acad. Sci. U.S.A. 90 (6): 2112–6. 1993. doi:10.1073/pnas.90.6.2112. PMID 7681583. Bibcode: 1993PNAS...90.2112L.
- ↑ Klug A (1999). "Zinc finger peptides for the regulation of gene expression". J. Mol. Biol. 293 (2): 215–8. doi:10.1006/jmbi.1999.3007. PMID 10529348.
- ↑ Hall TM (2005). "Multiple modes of RNA recognition by zinc finger proteins". Curr. Opin. Struct. Biol. 15 (3): 367–73. doi:10.1016/j.sbi.2005.04.004. PMID 15963892. https://zenodo.org/record/1259349.
- ↑ Brown RS (2005). "Zinc finger proteins: getting a grip on RNA". Curr. Opin. Struct. Biol. 15 (1): 94–8. doi:10.1016/j.sbi.2005.01.006. PMID 15718139.
- ↑ "Sticky fingers: zinc-fingers as protein-recognition motifs". Trends Biochem. Sci. 32 (2): 63–70. 2007. doi:10.1016/j.tibs.2006.12.007. PMID 17210253.
- ↑ "Zinc fingers--folds for many occasions". IUBMB Life 54 (6): 351–5. 2002. doi:10.1080/15216540216035. PMID 12665246.
- ↑ "Zinc finger proteins: new insights into structural and functional diversity". Curr. Opin. Struct. Biol. 11 (1): 39–46. 2001. doi:10.1016/S0959-440X(00)00167-6. PMID 11179890.
- ↑ "RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination". Proc. Natl. Acad. Sci. U.S.A. 96 (20): 11364–9. 1999. doi:10.1073/pnas.96.20.11364. PMID 10500182. Bibcode: 1999PNAS...9611364L.
- ↑ "RING finger proteins: mediators of ubiquitin ligase activity". Cell 102 (5): 549–52. 2000. doi:10.1016/S0092-8674(00)00077-5. PMID 11007473.
- ↑ Freemont PS (2000). "RING for destruction?". Curr. Biol. 10 (2): R84–7. doi:10.1016/S0960-9822(00)00287-6. PMID 10662664.
External links
- RING+Finger+Domains at the US National Library of Medicine Medical Subject Headings (MeSH)
Original source: https://en.wikipedia.org/wiki/RING finger domain.
Read more |