List of named differential equations

From HandWiki
Short description: none

Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

Mathematics

Algebraic geometry

Complex analysis

Differential geometry

Dynamical systems and Chaos theory

Mathematical physics

Ordinary Differential Equations (ODEs)

Riemannian geometry

Physics

Astrophysics

Classical mechanics

Electromagnetism

Fluid dynamics and hydrology

General relativity

Materials science

Nuclear physics

Plasma physics

Quantum mechanics and quantum field theory

Thermodynamics and statistical mechanics

Waves (mechanical or electromagnetic)

Engineering

Electrical and Electronic Engineering

Game theory

Mechanical engineering

Nuclear engineering

  • Neutron diffusion equation[3]

Optimal control

Orbital mechanics

Signal processing

Transportation engineering

Chemistry

Biology and medicine

Population dynamics

Economics and finance

Linguistics

Military strategy

References

  1. Zebiak, Stephen E.; Cane, Mark A. (1987). "A Model El Niño–Southern Oscillation". Monthly Weather Review 115 (10): 2262–2278. doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2. ISSN 1520-0493. https://journals.ametsoc.org/view/journals/mwre/115/10/1520-0493_1987_115_2262_ameno_2_0_co_2.xml. 
  2. Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, pp. 1–2, ISBN 0-13-111892-7 
  3. Ragheb, M. (2017). "Neutron Diffusion Theory". https://mragheb.com/NPRE%20402%20ME%20405%20Nuclear%20Power%20Engineering/Neutron%20Diffusion%20Theory.pdf. 
  4. Choi, Youngsoo (2011). "PDE-constrained Optimization and Beyond". https://web.stanford.edu/class/cme334/docs/2011-11-08-choi_pdeopt.pdf. 
  5. Heinkenschloss, Matthias (2008). "PDE Constrained Optimization". SIAM Conference on Optimization. https://archive.siam.org/meetings/op08/Heinkenschloss.pdf. 
  6. Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60 (1–4): 259–268. doi:10.1016/0167-2789(92)90242-F. Bibcode1992PhyD...60..259R. 
  7. Murray, James D. (2002). Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics. 17 (3rd ed.). New York: Springer. pp. 395–417. doi:10.1007/b98868. ISBN 978-0-387-95223-9. https://www.ucl.ac.uk/~rmjbale/3307/Reading_Chemotaxis1.pdf. 
  8. Fernández-Villaverde, Jesús (2010). "The econometrics of DSGE models". SERIEs 1 (1–2): 3–49. doi:10.1007/s13209-009-0014-7. https://www.sas.upenn.edu/~jesusfv/econometricsDSGE.pdf. 
  9. Piazzesi, Monika (2010). "Affine Term Structure Models". https://web.stanford.edu/~piazzesi/s.pdf. 
  10. Cardaliaguet, Pierre (2013). "Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France)". https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf.