Physics:Timeline of gravitational physics and relativity

From HandWiki
Short description: Timeline

The following is a timeline of gravitational physics and general relativity.

Before 1500

  • 3rd century BC – Aristarchus of Samos proposes heliocentric model, measures the distance to the Moon and its size

1500s

  • 1543 – Nicolaus Copernicus places the Sun at the gravitational center, starting a revolution in science.
  • 1583 – Galileo Galilei deduces the period relationship of a pendulum from observations (according to later biographer).
  • 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.[1]
  • 1589 – Galileo Galilei describes a hydrostatic balance for measuring specific gravity.
  • 1590 – Galileo Galilei formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.

1600s

Geometric diagram for Newton's proof of Kepler's second law.
  • 1602 – Galileo Galilei conducts experiments on pendulum motion.
  • 1604 – Galileo Galilei conducts experiments with inclined planes and induces the law of falling objects.
  • 1607 – Galileo Galilei derives a mathematical formulation of the law of falling objects based on his earlier experiments.
  • 1608 – Galileo Galilei discovers the parabolic arc of projectiles through experiment.
  • 1609 – Johannes Kepler his first two laws of planetary motion.[2]
  • 1619 – Johannes Kepler publishes his third law of planetary motion.[2]
  • 1632 – Galileo Galilei publishes The Sidereal Messenger, detailing his astronomical discoveries made with a telescope.[3]
  • 1665 – Isaac Newton introduces an inverse-square universal law of gravitation uniting terrestrial and celestial theories of motion and uses it to predict the orbit of the Moon and the parabolic arc of projectiles.
  • 1684 – Isaac Newton proves that planets moving under an inverse-square force law will obey Kepler's laws in a letter to Edmond Halley.
  • 1686 – Isaac Newton uses a fixed length pendulum with weights of varying composition to test the weak equivalence principle to 1 part in 1000.[4][5]
  • 1686 – Isaac Newton publishes his Mathematical Principles of Natural Philosophy, where he develops his calculus, states his laws of motion and gravitation, proves the shell theorem, explains the tides, and calculates the figure of the Earth.[4]

1700s

Lagrange points

1800s

1900s

The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s

Einstein's 1911 argument for gravitational redshift

1920s

1930s

The Einstein Cross, an example of gravitational lensing at work

1940s

1950s

1960s

1970s

Image of Cygnus X-1 by the Chandra X-ray Observatory (2009)
  • 1970 – Vladimir A. Belinskiǐ, Isaak Markovich Khalatnikov, and Evgeny Lifshitz introduce the BKL conjecture.
  • 1970 – Hawking and Penrose prove trapped surfaces must arise in black holes.
  • 1970 – the Kinnersley-Walker photon rocket.
  • 1970 – Peter Szekeres introduces colliding plane waves.
  • 1971 – Alfred Goldhaber and Michael Nieto give stringent limits on the photon mass.[146] The strictest one is [math]\displaystyle{ m_{\gamma} \leq 4 \times 10^{-51} \text{kg} }[/math].[147]
  • 1971 – Stephen W. Hawking proves the area theorem for black holes.[148]
  • 1971 – Peter C. Aichelburg and Roman U. Sexl introduce the Aichelburg–Sexl ultraboost.
  • 1971 – Introduction of the Khan–Penrose vacuum, a simple explicit colliding plane wave spacetime.
  • 1971 – Robert H. Gowdy introduces the Gowdy vacuum solutions (cosmological models containing circulating gravitational waves).
  • 1971 – Cygnus X-1, the first solid black hole candidate, discovered by Uhuru satellite.
  • 1971 – William H. Press discovers black hole ringing by numerical simulation.
  • 1971 – Harrison and Estabrook algorithm for solving systems of PDEs.
  • 1971 – James W. York introduces conformal method generating initial data for ADM initial value formulation.
  • 1971 – Robert Geroch introduces Geroch group and a solution generating method.
  • 1972 – Jacob Bekenstein proposes that black holes have a non-decreasing entropy which can be identified with the area.[149]
  • 1972 – Sachs introduces optical scalars and proves peeling theorem.
  • 1972 – Rainer Weiss proposes concept of interferometric gravitational wave detector in an unpublished manuscript.[150]
  • 1972 – Joseph Hafele and Richard Keating perform the Hafele–Keating experiment.[151][152][153]
  • 1972 – Richard H. Price studies gravitational collapse with numerical simulations.
  • 1972 – Saul Teukolsky derives the Teukolsky equation.[154]
  • 1972 – Yakov B. Zel'dovich predicts the transmutation of electromagnetic and gravitational radiation.
  • 1972 – Brandon Carter, Stephen Hawking, and James M. Bardeen propose the four laws of black hole mechanics,[155]
  • 1972 – James Bardeen calculates the shadow of a black hole.[156] This was later verified by the Event Horizon Telescope.[157]
  • 1973 – Charles W. Misner, Kip S. Thorne and John A. Wheeler publish the treatise Gravitation, a textbook that remains in use in the twenty-first century.[158][159]
  • 1973 – Stephen W. Hawking and George Ellis publish the monograph The Large Scale Structure of Space-Time.
  • 1973 – Robert Geroch introduces the GHP formalism,
  • 1973 – Homer Ellis obtains the Ellis drainhole,[160] the first traversable wormhole.
  • 1974 – Russell Hulse and Joseph Hooton Taylor, Jr. discover the Hulse–Taylor binary pulsar,
  • 1974 – James W. York and Niall Ó Murchadha present the analysis of the initial value formulation and examine the stability of its solutions,
  • 1974 – R. O. Hansen introduces Hansen–Geroch multipole moments,
  • 1974 – Stephen Hawking discovers Hawking radiation.[161][162]
  • 1974 – Stephen Hawking shows that the area of a black hole is proportional to its entropy, as previously conjectured by Jacob Bekenstein.[163]
  • 1975 – Roberto Colella, Albert Overhauser, and Samuel Werner observe the quantum-mechanical phase shift of neutrons due to gravity.[164] Neutron interferometry was later used to test the principle of equivalence.[165][166][167]
  • 1975 – Chandrasekhar and Steven Detweiler compute quasinormal modes.
  • 1975 – Szekeres and D. A. Szafron discover the Szekeres–Szafron dust solutions.
  • 1976 – Penrose introduces Penrose limits (every null geodesic in a Lorentzian spacetime behaves like a plane wave),
  • 1978 – Penrose introduces the notion of a thunderbolt,
  • 1978 – Belinskiǐ and Zakharov show how to solve Einstein's field equations using the inverse scattering transform; the first gravitational solitons,
  • 1979 – Dennis Walsh, Robert Carswell, and Ray Weymann discover the gravitationally lensed quasar Q0957+561.[168]
  • 1979 – Jean-Pierre Luminet creates an image of a black hole with an accretion disk using computer simulation.[169][170]
  • 1979-81 – Richard Schoen and Shing-Tung Yau prove the positive mass theorem.[171][172] Edward Witten independently proves the same thing.[173]

1980s

1990s

Parameter space of various approximation techniques in general relativity

2000s

2010s

Improving cosmological measurements by three different satellites
  • 2011 – Wilkinson Microwave Anisotropy Probe (WMAP) finds no statistically significant deviations from the ΛCDM model of cosmology.[204]
  • 2012 – Hubble Ultra-Deep Field image released. It was created using data collected by the Hubble Space Telescope between 2003-2004.[205]
  • 2013 – NuSTAR and XMM-Newton measure the spin of the supermassive black hole at the center of the galaxy NGC 1365.[206]
  • 2015 – Advanced LIGO reports the first direct detections of gravitational waves, GW150914[207] and GW151226,[208] mergers of stellar-mass black holes. Gravitational-wave astronomy is born.[209] No deviations from general relativity were found.[210][211]
  • 2017 – LIGO-VIRGO collaboration detects gravitational waves emitted by a neutron-star binary, GW170817.[212] The Fermi Gamma-ray Space Telescope and the International Gamma-ray Astrophysics Laboratory (INTEGRAL) unambiguously detect the corresponding gamma-ray burst.[213][214] LIGO-VIRGO and Fermi constrain the difference between the speed of gravity and the speed of light in vacuum to 1015.[215] This marks the first time electromagnetic and gravitational waves are detected from a single source,[216][217] and give direct evidence that some (short) gamma-ray bursts are due to colliding neutron stars.[212][213]
  • 2017 – Multi-messenger astronomy reveals neutron-star mergers to be responsible for the nucleosynthesis of some heavy elements,[218][219][220][221] such as strontium,[222] via the rapid-neutron capture or r-process.[223]
  • 2017 – MICROSCOPE satellite experiment verifies the principle of equivalence to 1015 in terms of the Eötvös ratio [math]\displaystyle{ \eta }[/math].[224] The final report is published in 2022.[225][226]
  • 2017 – Principle of equivalence tested to 10-9 for atoms in a coherent state of superposition.[227]
  • 2017 – Scientists begin using gravitational-wave sources as "standard sirens" to measure the Hubble constant, finding its value to be broadly in line with the best estimates of the time.[228][229] Refinements of this technique will help resolve discrepancies between the different methods of measurements.[230]
  • 2017 – Neutron Star Interior Composition Explorer (NICER) arrives on the International Space Station.[126]
  • 2017-18 – Georgios Moschidis proves the instability of the anti-de Sitter spacetime.[180]
  • 2018 – Final paper by the Planck satellite collaboration.[231] Planck operated between 2009 and 2013.
  • 2018 – Mihalis Dafermos and Jonathan Luk disprove the strong cosmic censorship hypothesis for the Cauchy horizon of a uncharged, rotating black hole.[232]
  • 2018 – Advanced LIGO-VIRGO collaboration constrains equations of state for a neutron star using GW170817.[233][234]
  • 2018 – Luciano Rezzolla, Elias R. Most, and Lukas R. Weih used gravitational-wave data from GW170817 constrain the possible maximum mass for a neutron star to around 2.17 solar masses.[235]
  • 2018 – Kris Pardo, Maya Fishbach, Daniel Holz, and David Spergel limit the number of spacetime dimensions through which gravitational waves can propagate to 3 + 1, in line with general relativity and ruling out models that allow for "leakage" to higher dimensions of space.[236][237] Analyses of GW170817 have also ruled out many other alternatives to general relativity,[238][239][240][241] and proposals for dark energy.[242][243][244][245][246]
  • 2018 – Two different experimental teams report highly precise values of Newton's gravitational constant [math]\displaystyle{ G }[/math] that slightly disagree.[247][248][249]
  • 2019 – Event Horizon Telescope (EHT) releases an image of supermassive black hole M87*, and measures its mass and shadow.[250][251] Results are confirmed in 2024.[252]
  • 2019 – Advanced LIGO and VIRGO detect GW190814, the collision of a 26-solar-mass black hole and a 2.6-solar-mass object, either an extremely heavy neutron star or a very light black hole.[253][254] This is the largest mass gap seen in a gravitational-wave source to-date.

2020s

The size of Sagittarius A* is smaller than the orbit of Mercury.

See also

References

  1. Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN 978-1-400-06013-9. 
  2. 2.0 2.1 Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN 9780061719516. 
  3. Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0. 
  4. 4.0 4.1 Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. University of California Press. ISBN 978-0-520-29088-4. 
  5. Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5. 
  6. Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. https://archive.org/details/synopsisofastron00hall/page/n3/mode/2up. Retrieved 16 June 2020. 
  7. Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN 978-0-3078-0105-0. 
  8. Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  9. Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN 978-0-30001-116-6. 
  10. 10.0 10.1 Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode1993QJRAS..34....1W.  For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  11. Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. http://www.cds.caltech.edu/~marsden/books/Mission_Design.html. Retrieved 2008-06-09.  (16MB)
  12. Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium. http://www.math.dartmouth.edu/~euler/docs/originals/E327.pdf. 
  13. Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  14. Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps" (in fr). Œuvres de Lagrange. Gauthier-Villars. pp. 229–334. http://gallica.bnf.fr/ark:/12148/bpt6k229225j/f231.image.r=Oeuvres+de+Lagrange.langFR. 
  15. Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society 88: 469–526. doi:10.1098/rstl.1798.0022. 
  16. Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics 55 (3): 210–213. doi:10.1119/1.15214. Bibcode1987AmJPh..55..210C. 
  17. s:On the Space Theory of Matter
  18. Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science 134 (333): 333–345. doi:10.2475/ajs.s3-34.203.333. Bibcode1887AmJS...34..333M. https://ajs.scholasticahq.com/article/62505. 
  19. French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN 0-393-09793-5. 
  20. Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". http://www.kfki.hu/eotvos/onehund.html. 
  21. Gerber, P. (1917). "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik 52 (4): 415–444. doi:10.1002/andp.19173570404. Bibcode1917AnP...357..415G. http://gallica.bnf.fr/ark:/12148/bpt6k153544.image.f425.  (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  22. Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper". Annalen der Physik. Series 4 17 (10): 891–921. doi:10.1002/andp.19053221004. Bibcode1905AnP...322..891E. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf. 
  23. Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?". Annalen der Physik. Series 4 18 (13): 639–641. doi:10.1002/andp.19053231314. Bibcode1905AnP...323..639E. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_18_639-641.pdf. 
  24. Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy". Bulletin of the American Mathematical Society 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X. https://www.ams.org/journals/bull/2000-37-01/S0273-0979-99-00805-8/S0273-0979-99-00805-8.pdf. 
  25. Hecht, Eugene (2011). "How Einstein Confirmed [math]\displaystyle{ E_0 = m c^2 }[/math]". American Journal of Physics 79: 591–600. doi:10.1119/1.3549223. https://pubs.aip.org/aapt/ajp/article-abstract/79/6/591/1041052/How-Einstein-confirmed-E0-mc2. 
  26. Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen". Jahrbuch der Radioaktivität (4): 411–462. http://www.soso.ch/wissen/hist/SRT/E-1907.pdf. 
  27. Eddington, A. S. (1926). "Einstein Shift and Doppler Shift" (in en). Nature 117 (2933): 86. doi:10.1038/117086a0. ISSN 1476-4687. Bibcode1926Natur.117...86E. 
  28. Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik 352 (15): 927–938. doi:10.1002/andp.19153521505. Bibcode1915AnP...352..927M. https://onlinelibrary.wiley.com/doi/10.1002/andp.19153521505. 
  29. Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity". Archive for History of Exact Sciences 51 (4): 273–314. doi:10.1007/BF00518231. https://www.tau.ac.il/~corry/publications/articles/pdf/mink.pdf. 
  30. Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN 978-0-812-96788-3. 
  31. Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" (in German). Annalen der Physik 355 (11): 1–56. doi:10.1002/andp.19093351102. Bibcode1909AnP...335....1B. https://onlinelibrary.wiley.com/doi/10.1002/andp.19093351102. 
  32. Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift 10: 814–17. 
  33. Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" (in German). Physikalische Zeitschrift 10 (918): 918. Bibcode1909PhyZ...10..918E. 
  34. Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics 65 (6): 486–7. doi:10.1119/1.18575. Bibcode1997AmJPh..65..486W. https://pubs.aip.org/aapt/ajp/article-abstract/65/6/486/530041/A-note-on-rotating-coordinates-in-relativity. 
  35. Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" (in German). Annalen der Physik. Series 4 35: 898–908. doi:10.1002/andp.19113401005. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1911_35_898-908.pdf. 
  36. Einstein, Albert (1915). "Feldgleichungen der Gravitation". Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847. 
  37. Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie". Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode1915SPAW.......831E. 
  38. Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie". Annalen der Physik 4 (7): 769–822. doi:10.1002/andp.19163540702. Bibcode1916AnP...354..769E. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1916_49_769-822.pdf. 
  39. "Die Grundlagen der Physik" (in German), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse 3: 395–407, 1915 
  40. Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. pp. 422. ISBN 978-1-4292-1508-4. 
  41. Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie.". Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften. https://en.wikisource.org/wiki/de:%C3%9Cber_das_Gravitationsfeld_eines_Massenpunktes_nach_der_Einsteinschen_Theorie. 
  42. Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit". Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften. 
  43. Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi:10.1146/knowable-010921-1. https://knowablemagazine.org/article/physical-world/2021/how-black-holes-morphed-theory-reality. Retrieved 25 March 2022. 
  44. Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  45. Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9. 
  46. Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" (in German). Preussische Akademie der Wissenschaften, Sitzungsberichte: 688–696. Bibcode1916SPAW.......688E. 
  47. de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. doi:10.1093/mnras/77.2.155. Bibcode1916MNRAS..77..155D. 
  48. Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" (in German). Preussische Akademie der Wissenschaften, Sitzungsberichte 1: 142–152. 
  49. The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
  50. Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society 77: 16–35. doi:10.1093/mnras/77.1.16. Bibcode1916MNRAS..77...16E. 
  51. Einstein, Albert (1918). "Gravitationswellen" (in German). Preussische Akademie der Wissenschaften, Sitzungsberichte: 154–167. 
  52. Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today 71 (12): 34. doi:10.1063/PT.3.4090. Bibcode2018PhT....71l..34H. https://physicstoday.scitation.org/doi/10.1063/PT.3.4090. 
  53. Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift 19: 33. Bibcode1918PhyZ...19...33T.  [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  54. Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift 22: 29. Bibcode1921PhyZ...22...29T.  [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  55. Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift 19: 156–163. Bibcode1918PhyZ...19..156L.  [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  56. Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A 220 (571–581): 291–333. doi:10.1098/rsta.1920.0009. Bibcode1920RSPTA.220..291D. https://zenodo.org/record/1432106. 
  57. Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today 62 (3): 37–42. doi:10.1063/1.3099578. Bibcode2009PhT....62c..37K. 
  58. David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
  59. Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik" (in de). Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.): 966–972. Bibcode1921SPAW.......966K. 
  60. Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN 0-19-850614-7. 
  61. Friedman, Alexander (December 1922). "Über die Krümmung des Raumes" (in de). Zeitschrift für Physik 10 (1): 377–386. doi:10.1007/BF01332580. Bibcode1922ZPhy...10..377F.  Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation 31 (12): 1991–2000. doi:10.1023/A:1026751225741. Bibcode1999GReGr..31.1991F. 
  62. Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation 26 (6): 619–636. doi:10.1007/BF02108003. Bibcode1994GReGr..26..619M. 
  63. Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co.. pp. 27. ISBN 978-1-627-79005-5. 
  64. Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society 84 (5): 308–333. doi:10.1093/mnras/84.5.308. Bibcode1924MNRAS..84..308E. 
  65. Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences 11 (7): 382–387. doi:10.1073/pnas.11.7.382. PMID 16587023. Bibcode1925PNAS...11..382A. 
  66. "Big bang theory is introduced – 1927". WGBH. https://www.pbs.org/wgbh/aso/databank/entries/dp27bi.html. 
  67. Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences 15 (3): 168–173. doi:10.1073/pnas.15.3.168. PMID 16577160. PMC 522427. Bibcode1929PNAS...15..168H. https://apod.nasa.gov/debate/1996/hub_1929.html. Retrieved 28 November 2019. 
  68. Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine 11 (70): 592–596. doi:10.1080/14786443109461710. 
  69. Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal 74: 81–82. doi:10.1086/143324. Bibcode1931ApJ....74...81C. 
  70. "Obituary: Georges Lemaitre". Physics Today 19 (9): 119–121. September 1966. doi:10.1063/1.3048455. 
  71. Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society 91 (5): 490–501. doi:10.1093/mnras/91.5.490. https://academic.oup.com/mnras/article/91/5/490/985169. 
  72. Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" (in German). Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse: 235–237. 
  73. Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences 18 (3): 213–214. doi:10.1073/pnas.18.3.213. PMID 16587663. Bibcode1932PNAS...18..213E. 
  74. Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays". Physical Review 46 (1): 76–77. doi:10.1103/PHYSREV.46.76.2. Bibcode1934PhRv...46...76B. https://authors.library.caltech.edu/5999/1/BAApr34.pdf. 
  75. McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. https://www.scientificamerican.com/article/ultracold-gases-can-probe-neutron-star-guts/. 
  76. A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
  77. Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science 84 (2188): 506–507. doi:10.1126/science.84.2188.506. PMID 17769014. Bibcode1936Sci....84..506E. https://www.science.org/doi/10.1126/science.84.2188.506. 
  78. F. Zwicky (1937). "Nebulae as Gravitational lenses". Physical Review 51 (4): 290. doi:10.1103/PhysRev.51.290. Bibcode1937PhRv...51..290Z. http://authors.library.caltech.edu/5611/1/ZWIpr37a.pdf. 
  79. Einstein, Albert; Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute 223: 43–54. doi:10.1016/S0016-0032(37)90583-0. Bibcode1937FrInJ.223...43E. 
  80. Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics 39 (1): 65–100. doi:10.2307/1968714. 
  81. Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society 53: 1. doi:10.1098/rsbm.2007.0018. 
  82. Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review 55 (364): 364–373. doi:10.1103/PhysRev.55.364. Bibcode1939PhRv...55..364T. https://journals.aps.org/pr/abstract/10.1103/PhysRev.55.364. 
  83. 83.0 83.1 83.2 83.3 Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN 978-0-195-32712-0. 
  84. Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review 54 (7): 540. doi:10.1103/PhysRev.54.540. Bibcode1938PhRv...54..540O. 
  85. Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores". Physical Review 55 (4): 374–381. doi:10.1103/PhysRev.55.374. Bibcode1939PhRv...55..374O. http://www.mpia-hd.mpg.de/home/fendt/Lehre/Vorlesung_CO/1939_oppenheimer_volkoff.pdf. Retrieved January 15, 2014. 
  86. Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review 56 (5): 455–459. doi:10.1103/PhysRev.56.455. Bibcode1939PhRv...56..455O. 
  87. Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. https://www.scientificamerican.com/article/oppenheimer-almost-discovered-black-holes-before-he-became-destroyer-of-worlds/. 
  88. Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review 74 (12): 1737–1742. doi:10.1103/PhysRev.74.1737. Bibcode1948PhRv...74.1737A. 
  89. Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature 162 (4124): 774–775. doi:10.1038/162774b0. Bibcode1948Natur.162..774A. 
  90. Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics (American Physical Society (APS)) 21 (3): 497–502. doi:10.1103/revmodphys.21.497. ISSN 0034-6861. Bibcode1949RvMP...21..497L. 
  91. Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
  92. Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society. Series A 65 (8): 608–619. doi:10.1088/0370-1298/65/8/304. Bibcode1952PPSA...65..608G. 
  93. Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation 1 (1): 9–18. doi:10.1007/BF00759198. Bibcode1970GReGr...1....9D. https://link.springer.com/article/10.1007/BF00759198. 
  94. 94.0 94.1 94.2 94.3 94.4 Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  95. Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review 98 (4): 1118–1122. doi:10.1103/PhysRev.98.1118. Bibcode1955PhRv...98.1118K. 
  96. Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review 101 (1): 482–488. doi:10.1103/PhysRev.101.482. Bibcode1956PhRv..101..482K. 
  97. Bertotti, B. (1956-10-01). "On gravitational motion" (in en). Il Nuovo Cimento 4 (4): 898–906. doi:10.1007/BF02746175. ISSN 1827-6121. Bibcode1956NCim....4..898B. https://doi.org/10.1007/BF02746175. 
  98. Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN 9783945561294. http://www.edition-open-access.de/sources/5/34/index.html. Retrieved 27 September 2016. 
  99. Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review 110 (4): 965–967. doi:10.1103/PhysRev.110.965. Bibcode1958PhRv..110..965F. https://journals.aps.org/pr/abstract/10.1103/PhysRev.110.965. 
  100. Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters 3 (439): 439–441. doi:10.1103/PhysRevLett.3.439. Bibcode1959PhRvL...3..439P. 
  101. Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters 119 (1743): 1743–1745. doi:10.1103/PhysRev.119.1743. Bibcode1960PhRv..119.1743K. http://link.aps.org/doi/10.1103/PhysRev.119.1743. 
  102. Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society 64: 261–284. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. 
  103. Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters 120 (4): 1507–1513. doi:10.1103/PhysRev.120.1507. Bibcode1960PhRv..120.1507G. https://journals.aps.org/pr/abstract/10.1103/PhysRev.120.1507. 
  104. Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters (Cdsads.u-strasbg.fr) 4 (8): 431. doi:10.1103/PhysRevLett.4.431. Bibcode1960PhRvL...4..431R. http://cdsads.u-strasbg.fr/abs/1960PhRvL...4..431R. Retrieved 2012-07-20. 
  105. Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters 4 (337): 337–341. doi:10.1103/PhysRevLett.4.337. Bibcode1960PhRvL...4..337P. 
  106. Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento 19 (3): 558–571. doi:10.1007/BF02733251. Bibcode1961NCim...19..558R.  Available (subscribers only) at Il Nuovo Cimento
  107. Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters 124 (925): 925–935. doi:10.1103/PhysRev.124.925. Bibcode1961PhRv..124..925B. https://journals.aps.org/pr/abstract/10.1103/PhysRev.124.925. 
  108. Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics (Elsevier BV) 26 (3): 442–517. doi:10.1016/0003-4916(64)90259-3. ISSN 0003-4916. Bibcode1964AnPhy..26..442R. 
  109. Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American 205 (6): 84–95. doi:10.1038/scientificamerican1261-84. Bibcode1961SciAm.205f..84D. 
  110. Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters 128 (919): 919–929. doi:10.1103/PhysRev.128.919. Bibcode1962PhRv..128..919F. https://journals.aps.org/pr/abstract/10.1103/PhysRev.128.919. 
  111. Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. ; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  112. Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters 11 (5): 237–238. doi:10.1103/PhysRevLett.11.237. Bibcode1963PhRvL..11..237K. 
  113. Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters 10 (66): 66–68. doi:10.1103/PhysRevLett.10.66. Bibcode1963PhRvL..10...66P. 
  114. Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters 9 (4): 357–359. doi:10.1016/0031-9163(64)90396-8. Bibcode1964PhL.....9..357W. 
  115. Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review 135 (4B): B1049–B1056. doi:10.1103/PhysRev.135.B1049. Bibcode1964PhRv..135.1049W. 
  116. Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters 12 (4): 114–116. doi:10.1103/PhysRevLett.12.114. Bibcode1964PhRvL..12..114C. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.12.114. 
  117. Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today 17 (5): 21–34. doi:10.1063/1.3051610. Bibcode1964PhT....17e..21C. "So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.". 
  118. Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society 128 (4): 307–310. doi:10.1093/mnras/128.4.307. https://academic.oup.com/mnras/article/128/4/307/2601707. 
  119. Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters 13 (26): 789–791. doi:10.1103/PhysRevLett.13.789. Bibcode1964PhRvL..13..789S. 
  120. "Haystack marks physics milestone". MIT News. July 14, 2005. https://news.mit.edu/2005/einstein. 
  121. Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters 14 (57): 57–59. doi:10.1103/PhysRevLett.14.57. Bibcode1965PhRvL..14...57P. 
  122. Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics 6 (6): 915–917. doi:10.1063/1.1704350. Bibcode1965JMP.....6..915N. 
  123. Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics 6 (6): 918–919. doi:10.1063/1.1704351. Bibcode1965JMP.....6..918N. 
  124. Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal 142: 419–421. doi:10.1086/148307. Bibcode1965ApJ...142..419P. 
  125. Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9. 
  126. 126.0 126.1 Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American. https://www.scientificamerican.com/article/neutron-stars-natures-weirdest-form-of-matter/#. 
  127. Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today 58 (3): 84. doi:10.1063/1.1897570. Bibcode2005PhT....58c..84D. https://pubs.aip.org/physicstoday/article/58/3/84/1017002/Bryce-Seligman-DeWitt. 
  128. Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. doi:10.1103/PhysRev.164.1776. Bibcode1967PhRv..164.1776I. 
  129. Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review 164 (5): 1776–1779. doi:10.1103/PhysRev.164.1776. Bibcode1967PhRv..164.1776I. https://journals.aps.org/pr/abstract/10.1103/PhysRev.164.1776. 
  130. Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review 174 (5): 1559–1571. doi:10.1103/PhysRev.174.1559. Bibcode1968PhRv..174.1559C. 
  131. Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters 20 (22): 1265–1269. doi:10.1103/PhysRevLett.20.1265. Bibcode1968PhRvL..20.1265S. 
  132. Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters 169 (1017): 1017–1025. doi:10.1103/PhysRev.169.1017. Bibcode1968PhRv..169.1017N. https://journals.aps.org/pr/abstract/10.1103/PhysRev.169.1017. 
  133. Bonnor, William B. (1969). "The Gravitational Field of Light". Communications in Mathematical Physics 13 (3): 163–174. doi:10.1007/BF01645484. Bibcode1969CMaPh..13..163B. https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-13/issue-3/The-gravitational-field-of-light/cmp/1103841572.pdf. 
  134. "Making Waves" (in en-US). TERP. 2016-08-18. http://terp.umd.edu/making-waves/. 
  135. Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science. https://www.science.org/content/article/remembering-joseph-weber-controversial-pioneer-gravitational-waves. 
  136. David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  137. Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie 1: 252–276. Bibcode1969NCimR...1..252P. 
  138. Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics 14 (4): 329–335. doi:10.1007/BF01645389. Bibcode1969CMaPh..14..329C. https://link.springer.com/article/10.1007/BF01645389. 
  139. Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal 142: 1488. doi:10.1086/148432. Bibcode1965ApJ...142.1488C. 
  140. Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal 147: 334. doi:10.1086/149003. Bibcode1967ApJ...147..334C. 
  141. Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal 158: 45. doi:10.1086/150170. Bibcode1969ApJ...158...45C. 
  142. Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics 86: 55. doi:10.1086/150171. Bibcode1969ApJ...158...55C. 
  143. Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal 160: 153. doi:10.1086/150414. Bibcode1970ApJ...160..153C. 
  144. Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal 152: 25. doi:10.1086/149520. Bibcode1968ApJ...152...25H. 
  145. Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 314 (1519): 529–548. doi:10.1098/rspa.1970.0021. Bibcode1970RSPSA.314..529H. 
  146. Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics (American Physical Society) 43 (3): 277–296. doi:10.1103/RevModPhys.43.277. Bibcode1971RvMP...43..277G. https://link.aps.org/doi/10.1103/RevModPhys.43.277. 
  147. Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN 0-471-30932-X. 
  148. Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics 25 (2): 152–166. doi:10.1007/BF01877517. http://projecteuclid.org/euclid.cmp/1103857884. 
  149. Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento 4 (15): 99–104. doi:10.1007/BF02757029. 
  150. Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  151. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains". Science 177 (4044): 166–168. doi:10.1126/science.177.4044.166. PMID 17779917. Bibcode1972Sci...177..166H. http://www.personal.psu.edu/rq9/HOW/Atomic_Clocks_Predictions.pdf. 
  152. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains". Science 177 (4044): 168–170. doi:10.1126/science.177.4044.168. PMID 17779918. Bibcode1972Sci...177..168H. http://www.personal.psu.edu/rq9/HOW/Atomic_Clocks_Experiment.pdf. 
  153. Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263. https://books.google.com/books?id=BAIlXPgcsHwC&pg=PA261. 
  154. Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations". Physical Review Letters 29 (16): 1114–1118. doi:10.1103/PhysRevLett.29.1114. Bibcode1972PhRvL..29.1114T. https://authors.library.caltech.edu/88198/1/PhysRevLett.29.1114.pdf. 
  155. Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics". Communications in Mathematical Physics 31 (2): 161–170. doi:10.1007/BF01645742. Bibcode1973CMaPh..31..161B. https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-31/issue-2/The-four-laws-of-black-hole-mechanics/cmp/1103858973.pdf. 
  156. Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. ISBN 9780677156101. Bibcode1973blho.conf..215B. https://books.google.com/books?id=sUr-EVqZLckC&dq=james+bardeen&pg=PA215. 
  157. Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. https://www.nytimes.com/2022/07/03/science/space/james-bardeen-an-expert-on-unraveling-einsteins-equations-dies-at-83.html. 
  158. Kaiser, David (2012). "A Tale of Two Textooks". Isis (University of Chicago Press) 103 (1): 126–138. doi:10.1086/664983. PMID 22655343. https://www.journals.uchicago.edu/doi/10.1086/664983. 
  159. Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. https://pubs.aip.org/physicstoday/online/41279/Gravitation-s-attraction-50-years-later. 
  160. H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics 14 (1): 104–118. doi:10.1063/1.1666161. Bibcode1973JMP....14..104E. 
  161. Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.. http://www.scientificamerican.com/article.cfm?id=hawking-radiation. 
  162. Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature 248 (5443): 30–31. doi:10.1038/248030a0. Bibcode1974Natur.248...30H. https://www.nature.com/articles/248030a0. 
  163. Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics 43 (3): 199–220. doi:10.1007/BF02345020. Bibcode1975CMaPh..43..199H. https://link.springer.com/article/10.1007/BF02345020. 
  164. Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters 34 (1472): 1472–1474. doi:10.1103/PhysRevLett.34.1472. Bibcode1975PhRvL..34.1472C. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.34.1472. 
  165. Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A 21 (1419): 1419–1438. doi:10.1103/PhysRevA.21.1419. Bibcode1980PhRvA..21.1419S. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.21.1419. 
  166. Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics 14 (5): 055010. doi:10.1088/1367-2630/14/5/055010. ISSN 1367-2630. Bibcode2012NJPh...14e5010A. https://iopscience.iop.org/article/10.1088/1367-2630/14/5/055010. 
  167. Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN 978-1-891389-78-8. 
  168. D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?". Nature 279 (5712): 381–384. doi:10.1038/279381a0. PMID 16068158. http://www.nature.com/nature/journal/v279/n5712/pdf/279381a0.pdf. 
  169. Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics 75 (1–2): 228–235. Bibcode1979A&A....75..228L. https://adsabs.harvard.edu/full/1979A%26A....75..228L. 
  170. "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse (CNRS). April 10, 2019. https://www.cnrs.fr/fr/node/3764. 
  171. Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics 65 (1): 45. doi:10.1007/BF01940959. Bibcode1979CMaPh..65...45S. http://projecteuclid.org/euclid.cmp/1103904790. 
  172. Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics 79 (2): 231. doi:10.1007/BF01942062. Bibcode1981CMaPh..79..231S. http://projecteuclid.org/euclid.cmp/1103908964. 
  173. Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics 80 (3): 381–402. doi:10.1007/BF01208277. Bibcode1981CMaPh..80..381W. http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.cmp/1103919981. 
  174. Rubin, Vera et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal 238: 471–487. doi:10.1086/158003. Bibcode1980ApJ...238..471R. 
  175. Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". NASA. https://apod.nasa.gov/apod/ap230405.html. 
  176. Vessot, R. F. C. et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser". Physical Review Letters 45 (26): 2081–2084. doi:10.1103/PhysRevLett.45.2081. Bibcode1980PhRvL..45.2081V. http://personal.psu.edu/rq9/HOW/Gravity_test_with_Space_Maser.pdf. 
  177. Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations". Physical Review D 22 (8): 1882–1905. doi:10.1103/PhysRevD.22.1882. Bibcode1980PhRvD..22.1882B. http://staff.ustc.edu.cn/~wzhao7/c_index_files/main.files/bardeen.pdf. 
  178. Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D 23 (2): 347–356. doi:10.1103/PhysRevD.23.347. Bibcode1981PhRvD..23..347G. 
  179. Friedrich, Helmut (1986). "On the existence of [math]\displaystyle{ n }[/math]-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics 107 (4): 587–609. doi:10.1007/BF01205488. Bibcode1986CMaPh.107..587F. https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-107/issue-4/On-the-existence-of-n-geodesically-complete-or-future-complete/cmp/1104116232.full. 
  180. 180.0 180.1 180.2 Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. https://www.quantamagazine.org/new-math-proves-that-a-special-kind-of-space-time-is-unstable-20200511/#. 
  181. Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature 323 (6086): 310–311. doi:10.1038/323310a0. Bibcode1986Natur.323..310S. https://www.nature.com/articles/323310a0. 
  182. Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID 10038800. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.1446. 
  183. Morris, Michael S.; Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics 56 (5): 395–412. doi:10.1119/1.15620. Bibcode1988AmJPh..56..395M. 
  184. Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters 61 (1): 1–23. doi:10.1103/RevModPhys.61.1. Bibcode1989RvMP...61....1W. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.61.1. 
  185. Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D 46 (603): 603–611. doi:10.1103/PhysRevD.46.603. PMID 10014972. Bibcode1992PhRvD..46..603H. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.46.603. 
  186. Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6. 
  187. Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D 50 (3874): 3874–3888. doi:10.1103/PhysRevD.50.3874. PMID 10018030. Bibcode1994PhRvD..50.3874D. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.3874. 
  188. Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D 73 (10): 104029. doi:10.1103/PhysRevD.73.104029. 
  189. "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. http://hubblesite.org/newscenter/archive/releases/1996/01/image/a/. 
  190. "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998. http://www.merlin.ac.uk/press/PR9801/press.html. 
  191. Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. https://query.nytimes.com/gst/fullpage.html?res=9906EFDF103BF932A05750C0A96E958260. 
  192. Smoot, G. F. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters 396 (1): L1–L5. doi:10.1086/186504. Bibcode1992ApJ...396L...1S. 
  193. Bennett, C.L. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters 464: L1–L4. doi:10.1086/310075. Bibcode1996ApJ...464L...1B. 
  194. Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J. et al. (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal 116 (3): 1009–1038. doi:10.1086/300499. Bibcode1998AJ....116.1009R. 
  195. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S. et al. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal 517 (2): 565–586. doi:10.1086/307221. Bibcode1999ApJ...517..565P. 
  196. Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D (American Physical Society (APS)) 59 (8): 084006. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. Bibcode1999PhRvD..59h4006B. 
  197. Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F. et al. (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D 93 (12): 122003. doi:10.1103/physrevd.93.122003. ISSN 2470-0010. PMID 32818163. Bibcode2016PhRvD..93l2003A. 
  198. Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander (15 April 2003). "Inflationary space-times are incomplete in past directions". Physical Review Letters 90 (15): 151301. doi:10.1103/PhysRevLett.90.151301. PMID 12732026. Bibcode2003PhRvL..90o1301B. 
  199. Perlov, Delia; Vilenkin, Alexander (7 August 2017). Cosmology for the Curious. Cham, Switzerland: Springer. pp. 330–31. ISBN 978-3319570402. 
  200. Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity". Physical Review Letters 93 (261101): 261101. doi:10.1103/PhysRevLett.93.261101. PMID 15697965. Bibcode2004PhRvL..93z1101W. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.261101. 
  201. Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal 629 (1): 15–22. doi:10.1086/431341. Bibcode2005ApJ...629...15H. https://iopscience.iop.org/article/10.1086/431341. 
  202. "Gravity Probe B Science Results—NASA Final Report". 2009. http://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf. 
  203. Everitt (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters 106 (22): 221101. doi:10.1103/PhysRevLett.106.221101. PMID 21702590. Bibcode2011PhRvL.106v1101E. 
  204. Bennett, C. L. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series 192 (2): 17. doi:10.1088/0067-0049/192/2/17. Bibcode2011ApJS..192...17B. 
  205. "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. http://www.nasa.gov/mission_pages/hubble/science/xdf.html. 
  206. "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. http://www.nasa.gov/mission_pages/nustar/news/nustar20130227.html.  This article incorporates text from this source, which is in the public domain.
  207. LIGO-VIRGO Collaboration (2016). "Tests of general relativity with GW150914". Physical Review Letters 116 (22): 22110. doi:10.1103/PhysRevLett.116.221101. PMID 27314708. Bibcode2016PhRvL.116v1101A. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.221101. 
  208. Abbott, B. P. (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters 116 (24): 241103. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. Bibcode2016PhRvL.116x1103A. 
  209. Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. http://www.skyandtelescope.com/astronomy-news/gravitational-wave-detection-heralds-new-era-of-science-0211201644/. 
  210. Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics (American Physical Society) 9 (52). https://physics.aps.org/articles/v9/52. 
  211. Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. https://news.mit.edu/2016/second-time-ligo-detects-gravitational-waves-0615. 
  212. 212.0 212.1 Abbott, B. P. et al. (October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters 119 (16): 161101. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. Bibcode2017PhRvL.119p1101A. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.161101. 
  213. 213.0 213.1 Goldstein, A. et al. (October 2017). "An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A". Astrophysical Review Letters 848 (2): L14. doi:10.3847/2041-8213/aa8f41. Bibcode2017ApJ...848L..14G. 
  214. Savchenko, V. et al. (October 2017). "INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817". Astrophysical Review Letters 848 (2): L15. doi:10.3847/2041-8213/aa8f94. Bibcode2017ApJ...848L..15S. 
  215. "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters 848 (2): L13. 2017. doi:10.3847/2041-8213/aa920c. Bibcode2017ApJ...848L..13A. 
  216. Abbott, B. P. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters 848 (2): L12. doi:10.3847/2041-8213/aa91c9. Bibcode2017ApJ...848L..12A. 
  217. McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics (American Physical Society) 10 (114). https://physics.aps.org/articles/v10/114. 
  218. "Merging neutron stars generate gravitational waves and a celestial light show". Science. 16 October 2017. doi:10.1126/science.aar2149. https://www.science.org/content/article/merging-neutron-stars-generate-gravitational-waves-and-celestial-light-show. 
  219. "NASA missions catch first light from a gravitational-wave event". NASA. 16 October 2017. https://www.jpl.nasa.gov/news/news.php?feature=6975. 
  220. Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science 363 (6426): 474–478. doi:10.1126/science.aau9540. PMID 30705182. Bibcode2019Sci...363..474J. 
  221. Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters 920 (1): L3. doi:10.3847/2041-8213/ac26c6. Bibcode2021ApJ...920L...3C. 
  222. Watson, Darach et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature 574 (7779): 497–500. doi:10.1038/s41586-019-1676-3. PMID 31645733. Bibcode2019Natur.574..497W. https://www.nature.com/articles/s41586-019-1676-3. 
  223. Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American. https://www.scientificamerican.com/article/how-star-collisions-forge-the-universes-heaviest-elements/. 
  224. Touboul, Pierre (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters 119 (23): 231101. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. Bibcode2017PhRvL.119w1101T. 
  225. MICROSCOPE Collaboration (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters 129 (12): 121102. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. Bibcode2022PhRvL.129l1102T. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.121102. 
  226. Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics (American Physical Society (APS)) 15 (94): 94. doi:10.1103/Physics.15.94. Bibcode2022PhyOJ..15...94B. https://physics.aps.org/articles/v15/94. 
  227. Tino, G. M. et al. (2017). "Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states". Nature Communications 8 (15529): 15529. doi:10.1038/ncomms15529. PMID 28569742. PMC 5461482. Bibcode2017NatCo...815529R. https://www.nature.com/articles/ncomms15529. 
  228. LIGO-VIRGO Collaboration; 1M2H Collaboration et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature 551 (7678): 85–88. doi:10.1038/nature24471. PMID 29094696. Bibcode2017Natur.551...85A. https://www.nature.com/articles/nature24471. 
  229. "A gravitational-wave standard siren measurement of the Hubble constant". Nature 551 (7678): 85–88. November 2017. doi:10.1038/nature24471. PMID 29094696. Bibcode2017Natur.551...85A. 
  230. "A two per cent Hubble constant measurement from standard sirens within five years". Nature 562 (7728): 545–547. October 2018. doi:10.1038/s41586-018-0606-0. PMID 30333628. Bibcode2018Natur.562..545C. 
  231. Akrami, Y. (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics 641: A1. doi:10.1051/0004-6361/201833880. Bibcode2020A&A...641A...1P. 
  232. Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. https://www.quantamagazine.org/mathematicians-disprove-conjecture-made-to-save-black-holes-20180517/. Retrieved 29 March 2020. 
  233. Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters 121 (161101): 161101. doi:10.1103/PhysRevLett.121.161101. PMID 30387654. Bibcode2018PhRvL.121p1101A. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.161101. 
  234. Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American. https://www.scientificamerican.com/article/gravitational-waves-reveal-the-hearts-of-neutron-stars1/. 
  235. Rezzolla, L.; Most, E. R.; Weih, L. R. (2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal 852 (2): L25. doi:10.3847/2041-8213/aaa401. Bibcode2018ApJ...852L..25R. 
  236. Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics 2018 (7): 048. doi:10.1088/1475-7516/2018/07/048. Bibcode2018JCAP...07..048P. 
  237. Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. https://news.uchicago.edu/story/gravitational-waves-provide-dose-reality-about-extra-dimensions. 
  238. "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B 765: 382–385. 2017. doi:10.1016/j.physletb.2016.12.048. Bibcode2017PhLB..765..382L. 
  239. "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D 95 (8): 084029. 14 April 2017. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. Bibcode2017PhRvD..95h4029B. 
  240. "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters 119 (25): 251301. December 2017. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. Bibcode2017PhRvL.119y1301B. 
  241. LIGO-VIRGO Collaboration (2018). "Tests of General Relativity with GW170817". Physical Review Letters 123 (1): 011102. doi:10.1103/PhysRevLett.123.011102. PMID 31386391. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.011102. 
  242. "Dark Energy after GW170817 and GRB170817A". Physical Review Letters 119 (25): 251302. December 2017. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. Bibcode2017PhRvL.119y1302C. 
  243. "GW 170817 falsifies dark matter emulators". Phys. Rev. D 97 (4): 041501. 2018. doi:10.1103/PhysRevD.97.041501. Bibcode2018PhRvD..97d1501B. 
  244. "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters 119 (25): 251304. December 2017. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. Bibcode2017PhRvL.119y1304E. 
  245. "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters 119 (25): 251303. December 2017. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. Bibcode2017PhRvL.119y1303S. 
  246. Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. https://theconversation.com/how-crashing-neutron-stars-killed-off-some-of-our-best-ideas-about-what-dark-energy-is-88998. 
  247. Li, Qing et al. (2018). "Measurements of the gravitational constant using two independent methods". Nature 560 (7720): 582–588. doi:10.1038/s41586-018-0431-5. PMID 30158607. Bibcode2018Natur.560..582L. https://www.nature.com/articles/s41586-018-0431-5. 
  248. Schlamminger, Stephan (August 29, 2018). "Gravity measured with record precision". Nature 560 (7720): 562–563. doi:10.1038/d41586-018-06028-6. PMID 30158612. Bibcode2018Natur.560..562S. https://www.nature.com/articles/d41586-018-06028-6/. 
  249. Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. https://www.sciencenews.org/article/strength-gravity-gravitational-constant-newton. 
  250. Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters 875 (1): L6. doi:10.3847/2041-8213/ab1141. Bibcode2019ApJ...875L...6E. 
  251. Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. https://www.jpl.nasa.gov/news/black-hole-image-makes-history. 
  252. Event Horizon Telescope Collaboration (January 2024). "The persistent shadow of the supermassive black hole of M*87". Astronomy & Astrophysics 681 (A79). doi:10.1051/0004-6361/202347932. https://www.aanda.org/articles/aa/abs/2024/01/aa47932-23/aa47932-23.html. 
  253. Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes". LIGO. https://dcc.ligo.org/public/0168/G2000846/002/GW190814%20Factsheet.pdf. 
  254. Abbott, R. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters 896 (2): L44. doi:10.3847/2041-8213/ab960f. Bibcode2020ApJ...896L..44A. 
  255. Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters 125 (19): 191101. doi:10.1103/PhysRevLett.125.191101. PMID 33216577. Bibcode2020PhRvL.125s1101A. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.191101. 
  256. Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. https://www.sciencenews.org/article/galileo-gravity-experiment-atoms-general-relativity-einstein. 
  257. Bothwell, Tobias; Kennedy, Colin J.; Aeppli, Alexander; Kedar, Dhruv; Robinson, John M.; Oelker, Eric; Staron, Alexander; Ye, Jun (2022). "Resolving the gravitational redshift across a millimetre-scale atomic sample". Nature 602 (7897): 420–424. doi:10.1038/s41586-021-04349-7. PMID 35173346. Bibcode2022Natur.602..420B. https://jila.colorado.edu/sites/default/files/2022-02/Redshift%201%20mm_Nature%202022.pdf. 
  258. McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity" (in en). https://www.quantamagazine.org/an-atomic-clock-promises-link-between-quantum-world-and-gravity-20211025/. 
  259. Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring". Astrophysical Journal Letters 910 (1): L12. doi:10.3847/2041-8213/abe71d. Bibcode2021ApJ...910L..12E. 
  260. Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon". Astrophysical Journal Letters 910 (1): L13. doi:10.3847/2041-8213/abe4de. Bibcode2021ApJ...910L..13E. 
  261. Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. https://iopscience.iop.org/journal/2041-8205/page/Focus_on_First_Sgr_A_Results. Retrieved May 12, 2022. 
  262. Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light" (in en-US). The New York Times. ISSN 0362-4331. https://www.nytimes.com/2022/05/12/science/black-hole-photo.html. 
  263. Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". Astrophysical Journal Letters 930 (2): L12. doi:10.3847/2041-8213/ac6674. Bibcode2022ApJ...930L..12E. 
  264. Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric". Astrophysical Journal Letters 930 (2): L17. doi:10.3847/2041-8213/ac6756. Bibcode2022ApJ...930L..17E. 
  265. Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (January 14, 2022). "Observation of a gravitational Aharonov-Bohm effect" (in en). Science 375 (6577): 226–229. doi:10.1126/science.abl7152. ISSN 0036-8075. PMID 35025635. Bibcode2022Sci...375..226O. https://www.science.org/doi/10.1126/science.abl7152. 
  266. Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?" (in en-US). https://bigthink.com/starts-with-a-bang/quantum-gravity/. 
  267. Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch" (in en-US). Science News. https://www.sciencenews.org/article/quantum-particles-gravity-spacetime-aharonov-bohm-effect. 
  268. Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (June 7, 2012). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment" (in en). Physical Review Letters 108 (23): 230404. doi:10.1103/PhysRevLett.108.230404. ISSN 0031-9007. PMID 23003927. Bibcode2012PhRvL.108w0404H. https://link.aps.org/doi/10.1103/PhysRevLett.108.230404. 
  269. Ehrenstein, David (June 7, 2012). "The Gravitational Aharonov-Bohm Effect" (in en). Physics 5: s87. doi:10.1103/Physics.5.s87. Bibcode2012PhyOJ...5S..87.. https://physics.aps.org/articles/v5/s87. 
  270. Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-delivers-deepest-infrared-image-of-universe-yet. 
  271. Dichiara, S.; Gropp, J. D.; Kennea, J. A.; Kuin, N. P. M.; Lien, A. Y.; Marshall, F. E.; Tohuvavohu, A.; Williams, M. A. et al. (2022). "Swift J1913.1+1946 a new bright hard X-ray and optical transient". The Astronomer's Telegram 15650: 1. Bibcode2022ATel15650....1D. https://www.astronomerstelegram.org/?read=15650. 
  272. Plait, Phil (October 21, 2022). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American. https://www.scientificamerican.com/article/the-brightest-gamma-ray-burst-ever-recorded-rattled-earths-atmosphere/. 
  273. Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". https://www.nasa.gov/feature/goddard/2022/nasa-s-swift-fermi-missions-detect-exceptional-cosmic-blast. 
  274. Adams, N.J. (January 2023). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society 518 (3): 4755–4766. doi:10.1093/mnras/stac3347. https://academic.oup.com/mnras/article/518/3/4755/6835532. Retrieved 2 January 2023. 
  275. Yan, Haojing (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters 942 (L9): 20. doi:10.3847/2041-8213/aca80c. Bibcode2023ApJ...942L...9Y. 
  276. Nightingale, James W. et al. (May 2023). "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens". Monthly Notices of the Royal Astronomical Society 521 (3): 3298–332. doi:10.1093/mnras/stad587. https://academic.oup.com/mnras/article/521/3/3298/7085506. 
  277. "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources". https://nustar.caltech.edu/news/nustar230406. 
  278. Bachetti, Matteo et al. (October 2022). "Orbital decay in M82 X-2". The Astrophysical Journal 937 (2): 125. doi:10.3847/1538-4357/ac8d67. Bibcode2022ApJ...937..125B. 
  279. Zhang, S.-B.; Ba, Z.-L.; Ning, D.-H.; Zhai, N.-F.; Lu, Z.-T.; Sheng, D. (2023). "Search for Spin-Dependent Gravitational Interactions at Earth Range". Physical Review Letters 130 (20): 201401. doi:10.1103/PhysRevLett.130.201401. PMID 37267553. Bibcode2023PhRvL.130t1401Z. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.201401. 
  280. Kimball, Derek F. Jackson (May 15, 2023). "Testing Gravity's Effect on Quantum Spins". Physics (American Physical Society (APS)) 16 (80). https://physics.aps.org/articles/v16/80. 
  281. Agazie, Gabriella et al. (June 29, 2023). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters 951 (L8): L8. doi:10.3847/2041-8213/acdac6. Bibcode2023ApJ...951L...8A. 
  282. Antoniadis, J. et al. (June 28, 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics 678: A50. doi:10.1051/0004-6361/202346844. 
  283. Reardon, Daniel J. et al. (June 29, 2023). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters 951 (1): L6. doi:10.3847/2041-8213/acdd02. Bibcode2023ApJ...951L...6R. 
  284. Xu, Heng et al. (2023). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics 23 (7): 075024. doi:10.1088/1674-4527/acdfa5. Bibcode2023RAA....23g5024X. https://iopscience.iop.org/article/10.1088/1674-4527/acdfa5. 
  285. Castelvecchi, Davide (June 29, 2023). "Monster gravitational waves spotted for first time". Nature. https://www.nature.com/articles/d41586-023-02167-7?utm_term=Autofeed&utm_campaign=nature&utm_medium=Social&utm_source=Facebook&error=cookies_not_supported&code=0441573e-f76a-4634-bed5-1c8a5f97809e#ref-CR4. 
  286. Lewis, Geraint F.; Brewer, Brendon J. (2023). "Detection of the cosmological time dilation of high-redshift quasars". Nature Astronomy 7 (10): 1265–1269. doi:10.1038/s41550-023-02029-2. Bibcode2023NatAs...7.1265L. https://www.nature.com/articles/s41550-023-02029-2. 
  287. University of Sydney (July 3, 2023). "Quasar 'clocks' show Universe was five times slower soon after the Big Bang". Science Daily. https://www.sciencedaily.com/releases/2023/07/230703133103.htm. 

External links