Astronomy:Moons of Jupiter

From HandWiki
Short description: Natural satellites of the planet Jupiter
A montage of Jupiter and its four largest moons (distance and sizes not to scale)

There are 79 known moons of Jupiter, not counting a number of moonlets likely shed from the inner moons, and S/2003 J 24, whose orbital elements have not yet been published.[1][2][3] All together, they form a satellite system which is called the Jovian system. The most massive of the moons are the four Galilean moons: Io; Europa; Ganymede; and Callisto, which were independently discovered in 1610 by Galileo Galilei and Simon Marius and were the first objects found to orbit a body that was neither Earth nor the Sun. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers (or other sexual partners) or daughters of the Roman god Jupiter or his Greek equivalent Zeus. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 75 known moons and the rings together composing just 0.003% of the total orbiting mass.

Of Jupiter's moons, eight are regular satellites with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter's equatorial plane. The Galilean satellites are nearly spherical in shape due to their planetary mass, and so would be considered at least dwarf planets if they were in direct orbit around the Sun. The other four regular satellites are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings. The remainder of Jupiter's moons are irregular satellites whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. Twenty-two of the irregular satellites have not yet been officially named.

Characteristics

The Galilean moons. From left to right, in order of increasing distance from Jupiter: Io; Europa; Ganymede; Callisto.

The physical and orbital characteristics of the moons vary widely. The four Galileans are all over 3,100 kilometres (1,900 mi) in diameter; the largest Galilean, Ganymede, is the ninth largest object in the Solar System, after the Sun and seven of the planets, Ganymede being larger than Mercury. All other Jovian moons are less than 250 kilometres (160 mi) in diameter, with most barely exceeding 5 kilometres (3.1 mi).[note 1] Their orbital shapes range from nearly perfectly circular to highly eccentric and inclined, and many revolve in the direction opposite to Jupiter's rotation (retrograde motion). Orbital periods range from seven hours (taking less time than Jupiter does to rotate around its axis), to some three thousand times more (almost three Earth years).

Origin and evolution

The relative masses of the Jovian moons. Those smaller than Europa are not visible at this scale, and combined would only be visible at 100× magnification.

Jupiter's regular satellites are believed to have formed from a circumplanetary disk, a ring of accreting gas and solid debris analogous to a protoplanetary disk.[4][5] They may be the remnants of a score of Galilean-mass satellites that formed early in Jupiter's history.[4][6]

Simulations suggest that, while the disk had a relatively high mass at any given moment, over time a substantial fraction (several tens of a percent) of the mass of Jupiter captured from the solar nebula was passed through it. However, only 2% of the proto-disk mass of Jupiter is required to explain the existing satellites.[4] Thus, several generations of Galilean-mass satellites may have been in Jupiter's early history. Each generation of moons might have spiraled into Jupiter, because of drag from the disk, with new moons then forming from the new debris captured from the solar nebula.[4] By the time the present (possibly fifth) generation formed, the disk had thinned so that it no longer greatly interfered with the moons' orbits.[6] The current Galilean moons were still affected, falling into and being partially protected by an orbital resonance with each other, which still exists for Io, Europa, and Ganymede. Ganymede's larger mass means that it would have migrated inward at a faster rate than Europa or Io.[4]

The outer, irregular moons are thought to have originated from captured asteroids, whereas the protolunar disk was still massive enough to absorb much of their momentum and thus capture them into orbit. Many are believed to have broken up by mechanical stresses during capture, or afterward by collisions with other small bodies, producing the moons we see today.[7]


Discovery

Jupiter and the Galilean moons through a 25 cm (10 in) Meade LX200 telescope.
The number of moons known for each of the four outer planets up to October 2019. Jupiter currently has 79 known satellites.

Chinese historian Xi Zezong claimed that the earliest record of a Jovian moon (Ganymede or Callisto) was a note by Chinese astronomer Gan De of an observation around 364 BC regarding a "reddish star".[8] However, the first certain observations of Jupiter's satellites were those of Galileo Galilei in 1609.[9] By January 1610, he had sighted the four massive Galilean moons with his 20× magnification telescope, and he published his results in March 1610.[10]

Simon Marius had independently discovered the moons one day after Galileo, although he did not publish his book on the subject until 1614. Even so, the names Marius assigned are used today: Ganymede, Callisto, Io, and Europa.[11] No additional satellites were discovered until E. E. Barnard observed Amalthea in 1892.[12]

With the aid of telescopic photography, further discoveries followed quickly over the course of the 20th century. Himalia was discovered in 1904,[13] Elara in 1905,[14] Pasiphae in 1908,[15] Sinope in 1914,[16] Lysithea and Carme in 1938,[17] Ananke in 1951,[18] and Leda in 1974.[19] By the time that the Voyager space probes reached Jupiter, around 1979, 13 moons had been discovered, not including Themisto, which had been observed in 1975,[20] but was lost until 2000 due to insufficient initial observation data. The Voyager spacecraft discovered an additional three inner moons in 1979: Metis, Adrastea, and Thebe.[21]

No additional moons were discovered for two decades, but between October 1999 and February 2003, researchers found another 34 moons using sensitive ground-based detectors.[22] These are tiny moons, in long, eccentric, generally retrograde orbits, and averaging 3 km (1.9 mi) in diameter, with the largest being just 9 km (5.6 mi) across. All of these moons are thought to have been captured asteroidal or perhaps comet bodies, possibly fragmented into several pieces.[23][24]

By 2015, a total of 15 additional moons were discovered.[24] Two more were discovered in 2016 by the team led by Scott S. Sheppard at the Carnegie Institution for Science, bringing the total to 69.[25] On 17 July 2018, the International Astronomical Union confirmed that Sheppard's team had discovered ten more moons around Jupiter, bringing the total number to 79.[2] Among these is Valetudo, which has a prograde orbit, but crosses paths with several moons that have retrograde orbits, making an eventual collision—at some point on a billions-of-years timescale—likely.[2]

In September 2020, researchers from the University of British Columbia identified 45 candidate moons from an analysis of archival images taken in 2010 by the Canada-France-Hawaii Telescope.[26] These candidates were mainly small and faint, down to a magnitude of 25.7 or over 800 m (0.50 mi) in diameter. From the number of candidate moons detected within a sky area of one square degree, the team extrapolated that the population of retrograde Jovian moons brighter than magnitude 25.7 is around 600, within a factor of 2.[27] Although the team considers their characterised candidates to be likely moons of Jupiter, they all remain unconfirmed due to their insufficient observation data for determining reliable orbits for each of them.[26]

Naming

Main page: Astronomy:Naming of moons
Galilean moons around Jupiter   Jupiter ·   Io ·   Europa ·   Ganymede ·   Callisto
Orbits of Jupiter's inner moons within its rings

The Galilean moons of Jupiter (Io, Europa, Ganymede, and Callisto) were named by Simon Marius soon after their discovery in 1610.[28] However, these names fell out of favor until the 20th century. The astronomical literature instead simply referred to "Jupiter I", "Jupiter II", etc., or "the first satellite of Jupiter", "Jupiter's second satellite", and so on.[28] The names Io, Europa, Ganymede, and Callisto became popular in the mid-20th century,[29] whereas the rest of the moons remained unnamed and were usually numbered in Roman numerals V (5) to XII (12).[30][31] Jupiter V was discovered in 1892 and given the name Amalthea by a popular though unofficial convention, a name first used by French astronomer Camille Flammarion.[22][32]

The other moons were simply labeled by their Roman numeral (e.g. Jupiter IX) in the majority of astronomical literature until the 1970s.[33] Several different suggestions were made for names of Jupiter's outer satellites, but none were universally accepted until 1975 when the International Astronomical Union's (IAU) Task Group for Outer Solar System Nomenclature granted names to satellites V–XIII,[34] and provided for a formal naming process for future satellites still to be discovered.[34] The practice was to name newly discovered moons of Jupiter after lovers and favorites of the god Jupiter (Zeus) and, since 2004, also after their descendants.[22] All of Jupiter's satellites from XXXIV (Euporie) onward are named after descendants of Jupiter or Zeus,[22] except LIII (Dia), named after a lover of Jupiter. Names ending with "a" or "o" are used for prograde irregular satellites (the latter for highly inclined satellites), and names ending with "e" are used for retrograde irregulars.[35] With the discovery of smaller, kilometre-sized moons around Jupiter, the IAU has established an additional convention to limit the naming of small moons with absolute magnitudes greater than 18 or diameters smaller than 1 km (0.62 mi).[36] Some of the most recently confirmed moons have not received names.

Some asteroids share the same names as moons of Jupiter: 9 Metis, 38 Leda, 52 Europa, 85 Io, 113 Amalthea, 239 Adrastea. Two more asteroids previously shared the names of Jovian moons until spelling differences were made permanent by the IAU: Ganymede and asteroid 1036 Ganymed; and Callisto and asteroid 204 Kallisto.

Groups

The orbits of Jupiter's irregular satellites, and how they cluster into groups: by semi-major axis (the horizontal axis in Gm); by orbital inclination (the vertical axis); and orbital eccentricity (the yellow lines). The relative sizes are indicated by the circles.

Regular satellites

These have prograde and nearly circular orbits of low inclination and are split into two groups:

  • Inner satellites or Amalthea group: Metis, Adrastea, Amalthea, and Thebe. These orbit very close to Jupiter; the innermost two orbit in less than a Jovian day. The latter two are respectively the fifth and seventh largest moons in the Jovian system. Observations suggest that at least the largest member, Amalthea, did not form on its present orbit, but farther from the planet, or that it is a captured Solar System body.[37] These moons, along with a number of seen and as-yet-unseen inner moonlets (see Amalthea moonlets), replenish and maintain Jupiter's faint ring system. Metis and Adrastea help to maintain Jupiter's main ring, whereas Amalthea and Thebe each maintain their own faint outer rings.[38][39]
  • Main group or Galilean moons: Io, Europa, Ganymede and Callisto. They are some of the largest objects in the Solar System outside the Sun and the eight planets in terms of mass and are larger than any known dwarf planet. Ganymede exceeds (and Callisto nearly equals) even the planet Mercury in diameter, though they are less massive. They are respectively the fourth-, sixth-, first-, and third-largest natural satellites in the Solar System, containing approximately 99.997% of the total mass in orbit around Jupiter, while Jupiter is almost 5,000 times more massive than the Galilean moons.[note 2] The inner moons are in a 1:2:4 orbital resonance. Models suggest that they formed by slow accretion in the low-density Jovian subnebula—a disc of the gas and dust that existed around Jupiter after its formation—which lasted up to 10 million years in the case of Callisto.[40] Several are suspected of having subsurface oceans.

Irregular satellites

Orbits and positions of Jupiter's irregular satellites as of 1 January 2021. Prograde orbits are colored blue while retrograde orbits are colored red.
Inclinations (°) vs. eccentricities of Jupiter's irregular satellites, with the major groups identified. Data as of 2021.

The irregular satellites are substantially smaller objects with more distant and eccentric orbits. They form families with shared similarities in orbit (semi-major axis, inclination, eccentricity) and composition; it is believed that these are at least partially collisional families that were created when larger (but still small) parent bodies were shattered by impacts from asteroids captured by Jupiter's gravitational field. These families bear the names of their largest members. The identification of satellite families is tentative, but the following are typically listed:[1][41][42]

  • Prograde satellites:
    • Themisto is the innermost irregular moon and is not part of a known family.[1][41]
    • The Himalia group is spread over barely 1.4 Gm in semi-major axes, 1.6° in inclination (27.5 ± 0.8°), and eccentricities between 0.11 and 0.25. It has been suggested that the group could be a remnant of the break-up of an asteroid from the asteroid belt.[41]
    • Carpo is another prograde moon and is not part of a known family. It has the highest inclination of all of the prograde moons.[1]
    • Valetudo is the outermost prograde moon and is not part of a known family. Its prograde orbit crosses paths with several moons that have retrograde orbits and may in the future collide with them.[2]
  • Retrograde satellites:
    • The Carme group is spread over only 1.2 Gm in semi-major axis, 1.6° in inclination (165.7 ± 0.8°), and eccentricities between 0.23 and 0.27. It is very homogeneous in color (light red) and is believed to have originated from a D-type asteroid progenitor, possibly a Jupiter trojan.[23]
    • The Ananke group has a relatively wider spread than the previous groups, over 2.4 Gm in semi-major axis, 8.1° in inclination (between 145.7° and 154.8°), and eccentricities between 0.02 and 0.28. Most of the members appear gray, and are believed to have formed from the breakup of a captured asteroid.[23]
    • The Pasiphae group is quite dispersed, with a spread over 1.3 Gm, inclinations between 144.5° and 158.3°, and eccentricities between 0.25 and 0.43.[23] The colors also vary significantly, from red to grey, which might be the result of multiple collisions. Sinope, sometimes included in the Pasiphae group,[23] is red and, given the difference in inclination, it could have been captured independently;[41] Pasiphae and Sinope are also trapped in secular resonances with Jupiter.[43]

List

The moons of Jupiter are listed below by orbital period. Moons massive enough for their surfaces to have collapsed into a spheroid are highlighted in bold. These are the four Galilean moons, which are comparable in size to the Moon. The other moons are much smaller, with the least massive Galilean moon being more than 7,000 times more massive than the most massive of the other moons. The irregular captured moons are shaded light gray when prograde and dark gray when retrograde. The orbits and mean distances of the irregular moons are strongly variable over short timescales due to frequent planetary and solar perturbations,[44] therefore the epochs of all orbital elements listed are based on the Julian date of 2459200.5, or 17 December 2020.[45] (As of 2021), S/2003 J 10 is the only moon of Jupiter considered lost due to its uncertain orbit.[46] A number of other moons have only been observed for a year or two, but have decent enough orbits to be easily measurable at present.[44]

Key
 
Inner moons

Galilean moons

Ungrouped moons

Himalia group

Ananke group

Carme group

Pasiphae group
Order
[note 3]
Label
[note 4]
Name
Pronunciation Image Abs.
magn.
Diameter (km)[note 5] Mass
(×1016 kg)
Semi-major axis
(km)[47]
Orbital period (d)
[47][note 6]
Inclination
(°)[47]
Eccentricity
[1]
Discovery
year[22]
Discoverer[22] Group
[note 7]
1 16 XVI Metis /ˈmtɪs/
Metis.jpg
10.5 0043 43
(60 × 40 × 34)
align="right"| 36000 ≈ 3.6 align="right"| 128852 0000.2988 +0.2988
(+7h 10m 16s)
align="right"| 2.226 0.0077 1979 Synnott
(Voyager 1)
Inner
2 15 XV Adrastea /ædrəˈstə/
Adrastea.jpg
12.0 0016 16.4
(20 × 16 × 14)
align="right"| 2000 ≈ 0.2 align="right"|129000 0000.3023 +0.3023
(+7h 15m 21s)
align="right"| 2.217 0.0063 1979 Jewitt
(Voyager 2)
Inner
3 05 V Amalthea /æməlˈθə/[48]
Amalthea (moon).png
7.1 0167 167
(250 × 146 × 128)
align="right"| 2080000 208 align="right"|181366 0000.5012 +0.5012
(+12h 01m 46s)
align="right"| 2.565 0.0075 1892 Barnard Inner
4 14 XIV Thebe /ˈθb/
Thebe.jpg
9.0 0099 98.6
(116 × 98 × 84)
align="right"| 430000 ≈ 43 align="right"| 222452 000.6778 +0.6778
(+16h 16m 02s)
align="right"| 2.909 0.0180 1979 Synnott
(Voyager 1)
Inner
5 01 I Io /ˈ/
−1.7 3643 3643.2
(3660 × 3637 × 3631)
align="right"| 89319000000 8931900 align="right"|421700 01 +1.7691 align="right"| 0.050[49] 0.0041 1610 Galilei Galilean
6 02 II Europa /jʊəˈrpə/[50]
Europa-moon-with-margins.jpg
−1.4 3121 3121.6 align="right"| 48000000000 4800000 align="right"| 671034 03 +3.5512 align="right"| 0.471[49] 0.0094 1610 Galilei Galilean
7 03 III Ganymede /ˈɡænɪmd/[51][52]
Ganymede - Perijove 34 Composite.png
−2.1 5268 5268.2 align="right" | 148190000000 14819000 align="right"| 1070412 07 +7.1546 align="right"| 0.204[49] 0.0011 1610 Galilei Galilean
8 04 IV Callisto /kəˈlɪst/
Callisto.jpg
−1.2 4820 4820.6 align="right"| 107590000000 10759000 align="right"| 1882709 08 +16.689 align="right"| 0.205[49] 0.0074 1610 Galilei Galilean
9 18 XVIII Themisto /θɪˈmɪst/
S 2000 J 1.jpg
12.9 0009 9 align="right"| 690 ≈ 0.069 align="right"| 7405000 129.95 +130.18 align="right"| 44.590 0.2514 1975/2000 Kowal & Roemer/
Sheppard et al.
Themisto
10 13 XIII Leda /ˈldə/
Leda WISE-W3.jpg
12.7 0022 21.5 align="right"| 6000 ≈ 0.6 align="right"| 11196000 242.02 +242.02 align="right"| 27.641 0.1648 1974 Kowal Himalia
11 71 LXXI Ersa /ˈɜːrsə/
Ersa CFHT precovery 2003-02-24.png
15.9 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 11348700 246.99 +246.99 align="right"| 31.028 0.1043 2018 Sheppard et al. Himalia
12 65 LXV Pandia /pænˈdə/
Pandia CFHT precovery 2003-02-28.png
16.2 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 11462300 250.71 +250.71 align="right"| 27.023 0.2084 2017 Sheppard et al. Himalia
13 06 VI Himalia /hɪˈmliə/
Cassini-Huygens Image of Himalia.png
7.9 0140 139.6
(150 × 120)
align="right"| 4200000 420 align="right"| 11497400 251.86 +251.86 align="right"| 30.214 0.1510 1904 Perrine Himalia
14 10 X Lysithea /lˈsɪθiə/
Lysithea2.jpg
11.2 0042 42.2 align="right"| 63000 ≈ 6.3 align="right"| 11628300 256.17 +256.17 align="right"| 27.015 0.1377 1938 Nicholson Himalia
15 07 VII Elara /ˈɛlərə/
Elara2-LB1-mag17.jpg
9.6 0080 79.9 align="right"| 870000 ≈ 87 align="right"| 11671600 257.60 +257.60 align="right" | 30.216 0.2079 1905 Perrine Himalia
16 53 LIII Dia /ˈdə/
Dia-Jewitt-CFHT image-crop.png
16.3 0004 4 style="text-align:right;"| 90 ≈ 0.009 align="right"| 12304900 278.85 +278.85 align="right"| 27.481 0.2606 2000 Sheppard et al. Himalia
17 46 XLVI Carpo /ˈkɑːrp/
Carpo CFHT 2003-02-25.gif
16.1 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 17151800 458.90 +458.90 align="right"| 50.138 0.4967 2003 Sheppard et al. Carpo
18 62 LXII Valetudo /vælɪˈtjd/
Valetudo CFHT precovery 2003-02-28 annotated.gif
17.0 0001 1 style="text-align:right;"| 1.5 ≈ 0.00015 align="right"| 18819000 527.41 +527.41 align="right"| 32.033 0.2018 2016 Sheppard et al. Valetudo
19 34 XXXIV Euporie /ˈjpər/
Euporie-discovery-CFHT-annotated.gif
16.3 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 19593900 560.32 −560.32 align="right"| 147.851 0.1402 2001 Sheppard et al. Ananke
20 60 LX Eupheme /jˈfm/
Eupheme CFHT 2003-02-25.gif
16.6 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 20126300 583.31 −583.31 align="right"| 150.042 0.4104 2003 Sheppard et al. Ananke
21 55 LV || S/2003 J 18♦|| || style="background:black;"|
2003 J 18 CFHT recovery annotated.gif
||align="right"|16.5 || style="text-align:right;"| 0002 2
align="right"| 15 ≈ 0.0015 align="right"| 20348800 593.01 −593.01 align="right"| 142.783 0.0465 2003 Gladman et al. Ananke
22 52 LII || S/2010 J 2♦|| || style="background:black;"|
2010 J 2 CFHT discovery annotated.gif
||align="right"|17.3 || style="text-align:right;"| 0001 1
align="right"| 1.5 ≈ 0.00015 align="right"| 20436700 596.86 −596.86 align="right"| 148.697 0.3403 2010 Veillet Ananke
23 45 XLV Helike /ˈhɛlɪk/
Helike CFHT 2003-02-25.gif
16.0 0004 4 align="right"| 90 ≈ 0.009 align="right"| 20479500 598.74 −598.74 align="right"| 155.067 0.1331 2003 Sheppard et al. Ananke
24 A   S/2003 J 16♦
2003 J 16 CFHT recovery crop.gif
16.3 0002 2 style="text-align:right;"| 15 ≈ 0.0015 align="right"| 20512500 600.18 −600.18 align="right"| 151.163 0.3331 2003 Gladman et al. Ananke
25 F   S/2003 J 2♦
2003 J 2 Gladman CFHT crop.gif
16.7 0002 2 style="text-align:right;"| 15 ≈ 0.0015 align="right"| 20554400 602.02 −602.02 align="right"| 149.204 0.2777 2003 Sheppard et al. Ananke
26 33 XXXIII Euanthe /jˈænθ/
Euanthe-discovery-CFHT-annotated.gif
16.4 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 20583300 603.29 −603.29 align="right"| 146.808 0.1096 2001 Sheppard et al. Ananke
27 68 LXVIII S/2017 J 7♦ 16.6 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 20600100 604.03 −604.03 align="right"| 146.739 0.2626 2017 Sheppard et al. Ananke
28 30 XXX Hermippe /hərˈmɪp/
Hermippe-discovery.gif
15.6 0004 4 align="right"| 90 ≈ 0.009 align="right"| 20666200 606.94 −606.94 align="right"| 146.753 0.1981 2001 Sheppard et al. Ananke
29 27 XXVII Praxidike /prækˈsɪdɪk/
Praxidike-Jewitt-CFHT-annotated.gif
14.9 0007 7 align="right"| 430 ≈ 0.043 align="right"| 20682900 607.68 −607.68 align="right"| 149.692 0.2959 2000 Sheppard et al. Ananke
30 29 XXIX Thyone /θˈn/
Thyone-discovery-CFHT-annotated.gif
15.8 0004 4 align="right"| 90 ≈ 0.009 align="right"| 20712800 609.00 −609.00 align="right"| 147.328 0.1770 2001 Sheppard et al. Ananke
31 42 XLII Thelxinoe /θɛlkˈsɪn/ 16.3 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 20893300 616.97 −616.97 align="right"| 146.916 0.1709 2003 Sheppard et al. Ananke
32 64 LXIV S/2017 J 3♦
2017 J 3 CFHT 2003-12-25.gif
16.5 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 20976900 620.68 −620.68 align="right"| 147.968 0.1907 2017 Sheppard et al. Ananke
33 12 XII Ananke /əˈnæŋk/
Ananké.jpg
11.7 0029 29.1 align="right"| 30000 ≈ 3.0 align="right"| 21042500 623.59 −623.59 align="right"| 148.675 0.1747 1951 Nicholson Ananke
34 40 XL Mneme /ˈnm/
Mneme Discovery Image.jpg
16.3 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 21064100 624.55 −624.55 align="right"| 151.087 0.3428 2003 Gladman et al. Ananke
35 54 LIV || S/2016 J 1♦|| || style="background:black;"|
2016 J 1 CFHT 2003-02-26.gif
||align="right"|16.8 || align="right"| 0001 1
style="text-align:right;"| 1.5 ≈ 0.00015 align="right"| 21154000 628.56 −628.56 align="right"| 143.824 0.1294 2016 Sheppard et al. Ananke
36 35 XXXV Orthosie /ɔːrˈθz/
Orthosie-discovery-CFHT-annotated.gif
16.7 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 21171000 629.31 −629.31 align="right"| 148.488 0.4838 2001 Sheppard et al. Ananke
37 22 XXII Harpalyke /hɑːrˈpælɪk/
Harpalyke-Jewitt-CFHT-annotated.gif
15.9 0004 4 align="right"| 90 ≈ 0.009 align="right"| 21280200 634.19 −634.19 align="right"| 148.298 0.1602 2000 Sheppard et al. Ananke
38 24 XXIV Iocaste /əˈkæst/
Iocaste-Jewitt-CFHT-annotated.gif
15.4 0005 5 align="right"| 190 ≈ 0.019 align="right"| 21431800 640.98 −640.98 align="right"| 149.424 0.3295 2000 Sheppard et al. Ananke
39 70 LXX S/2017 J 9♦ 16.1 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 21492900 643.72 −643.72 align="right"| 155.775 0.2524 2017 Sheppard et al. Ananke
40 D   S/2003 J 12♦
2003 J 12 Gladman CFHT crop.gif
17.0 0001 1 style="text-align:right;"| 1.5 ≈ 0.00015 align="right"|21557700 646.64 −646.64 align="right"| 154.690 0.3657 2003 Sheppard et al. Ananke
41 E   S/2003 J 4‡
2003 J 4 Gladman CFHT crop.gif
16.7 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 22048600 668.85 −668.85 align="right"| 149.401 0.4967 2003 Sheppard et al. Pasiphae
42 25 XXV Erinome /ɛˈrɪnəm/ (?)
Erinome-Jewitt-CFHT-annotated.gif
16.0 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 22354300 682.80 −682.80 align="right"| 164.821 0.2052 2000 Sheppard et al. Carme
43 31 XXXI Aitne /ˈtn/
Aitne-discovery-CFHT-annotated.gif
16.0 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 22386500 684.28 −684.28 align="right"| 166.238 0.3150 2001 Sheppard et al. Carme
44 50 L Herse /ˈhɜːrs/ 16.5 0002 2 style="text-align:right;"|15 ≈ 0.0015 align="right"| 22408800 685.30 −685.30 align="right"| 164.347 0.1854 2003 Gladman et al. Carme
45 20 XX Taygete /tˈɪɪt/
Taygete-Jewitt-CFHT-annotated.gif
15.5 0005 5 align="right"| 160 ≈ 0.016 align="right"| 22433500 686.44 −686.44 align="right"| 163.261 0.3257 2000 Sheppard et al. Carme
46 63 LXIII S/2017 J 2♥
2017 J 2 CFHT 2003-02-26.gif
16.4 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 22472900 688.25 −688.25 align="right"| 165.676 0.3852 2017 Sheppard et al. Carme
47 67 LXVII S/2017 J 6‡ 16.4 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 22543800 691.51 −691.51 align="right"| 155.185 0.3226 2017 Sheppard et al. Pasiphae
48 47 XLVII Eukelade /jˈkɛləd/
Eukelade s2003j1movie arrow.gif
15.9 0004 4 align="right"| 90 ≈ 0.009 align="right"| 22576700 693.02 −693.02 align="right"| 163.822 0.2790 2003 Sheppard et al. Carme
49 11 XI Carme /ˈkɑːrm/
Carmé.jpg
10.6 0047 46.7 style="text-align:right;"| 130000 ≈ 13 align="right"| 22579900 693.17 −693.17 align="right" | 163.535 0.2295 1938 Nicholson Carme
50 61 LXI S/2003 J 19♥ 16.6 0002 2 style="text-align:right;"| 15 ≈ 0.0015 align="right"| 22752500 701.13 −701.13 align="right"| 167.738 0.2928 2003 Gladman et al. Carme
51 26 XXVI Isonoe /ˈsɒn/
Isonoe-Jewitt-CFHT-annotated.gif
16.0 0004 4 style="text-align:right;"| 90 ≈ 0.009 align="right"| 22776700 702.25 −702.25 align="right"| 162.834 0.2159 2000 Sheppard et al. Carme
52 G (lost) S/2003 J 10♥
2003 J 10 Gladman CFHT crop.gif
16.8 0002 2 style="text-align:right;"| 15 ≈ 0.0015 align="right"| 22896200 707.78 −707.78 align="right"| 163.481 0.2066 2003 Sheppard et al. Carme?
53 28 XXVIII Autonoe /ɔːˈtɒn/
Autonoe-discovery-CFHT-annotated.gif
15.5 0004 4 align="right"| 90 ≈ 0.009 align="right"| 22933400 709.51 −709.51 align="right"| 148.145 0.4290 2001 Sheppard et al. Pasiphae
54 58 LVIII Philophrosyne /fɪləˈfrɒzɪn/ 16.7 0002 2 style="text-align:right;"| 15 ≈ 0.0015 align="right"| 22939900 709.81 −709.81 align="right"| 147.900 0.3013 2003 Sheppard et al. Pasiphae
55 48 XLVIII Cyllene /sɪˈln/ 16.3 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 22965200 710.99 −710.99 align="right"| 150.047 0.6079 2003 Sheppard et al. Pasiphae
56 38 XXXVIII Pasithee /ˈpæsɪθ/
Pasithee-discovery-CFHT-annotated.gif
16.8 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 22967800 711.11 −711.11 align="right"| 164.727 0.2097 2001 Sheppard et al. Carme
57 51 LI || S/2010 J 1♥|| || style="background:black;"|
2010 J 1 CFHT image.gif
||align="right"|16.4 || style="text-align:right;"| 0002 2
align="right"| 15 ≈ 0.0015 align="right"| 22986900 712.00 −712.00 align="right" | 164.559 0.2937 2010 Jacobson et al. Carme
58 08 VIII Pasiphae /pəˈsɪf/
Pasiphaé.jpg
10.1 0058 57.8 align="right"| 300000 ≈ 30 align="right"| 23119300 718.16 −718.16 align="right"| 151.998 0.4362 1908 Melotte Pasiphae
59 36 XXXVI Sponde /ˈspɒnd/
Sponde-discovery-CFHT-annotated.gif
16.7 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23146500 719.42 −719.42 align="right"| 144.563 0.3455 2001 Sheppard et al. Pasiphae
60 69 LXIX S/2017 J 8♥
2017 J 8 CFHT precovery annotated.gif
17.0 0001 1 align="right"| 1.5 ≈ 0.00015 align="right"| 23173700 720.69 −720.69 align="right"| 166.071 0.2039 2017 Sheppard et al. Carme
61 32 XXXII Eurydome /jʊəˈrɪdəm/
Eurydome-discovery-CFHT-annotated.gif
16.2 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 23214500 722.59 −722.59 align="right"| 150.289 0.2975 2001 Sheppard et al. Pasiphae
62 66 LXVI S/2017 J 5♥ 16.5 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23352500 729.05 −729.05 align="right"| 166.555 0.2460 2017 Sheppard et al. Carme
63 23 XXIII Kalyke /ˈkælɪk/
Kalyke-Jewitt-CFHT-annotated.gif
15.4 0007 6.9 style="text-align:right;"| 400 ≈ 0.04 align="right"| 23377400 730.21 −730.21 align="right"| 166.899 0.2660 2000 Sheppard et al. Carme
64 39 XXXIX Hegemone /hɪˈɛmən/ 15.9 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 23422300 732.32 −732.32 align="right"| 154.675 0.3358 2003 Sheppard et al. Pasiphae
65 37 XXXVII Kale /ˈkl/
Kale-discovery-CFHT-annotated.gif
16.4 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23512200 736.54 −736.54 align="right"| 166.177 0.2893 2001 Sheppard et al. Carme
66 44 XLIV Kallichore /kəˈlɪkər/ 16.4 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23552900 738.45 −738.45 align="right"| 167.727 0.3183 2003 Sheppard et al. Carme
67 72 LXXII S/2011 J 1♥ 16.7 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23714400 746.06 −746.06 align="right"| 164.799 0.3193 2011 Sheppard et al. Carme
68 59 LIX || S/2017 J 1‡|| || style="background:black;"|
2017 J 1 CFHT precovery annotated.gif
||align="right"|16.6 || style="text-align:right;"| 0002 2
align="right"| 15 ≈ 0.0015 align="right" | 23753600 747.91 −747.91 align="right"| 147.253 0.4500 2017 Sheppard et al. Pasiphae
69 21 XXI Chaldene /kælˈdn/
Chaldene-Jewitt-CFHT-annotated.gif
16.0 0004 4 align="right"| 90 ≈ 0.009 align="right"| 23848300 752.39 −752.39 align="right"| 162.749 0.2705 2000 Sheppard et al. Carme
70 43 XLIII Arche /ˈɑːrk/
Bigs2002j1barrow.png
16.2 0003 3 align="right"| 45 ≈ 0.0045 align="right"| 23926500 756.09 −756.09 align="right"| 166.408 0.2367 2002 Sheppard et al. Carme
71 57 LVII Eirene /ˈrn/ 15.8 0004 4 style="text-align:right;"| 90 ≈ 0.009 style="text-align:right;"| 23934500 756.47 −756.47 align="right"| 162.713 0.2413 2003 Sheppard et al. Carme
72 49 XLIX Kore /ˈkɔːr/
Kore s2003j14movie circled.gif
16.6 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 23999700 759.56 −759.56 align="right" | 136.628 0.2347 2003 Sheppard et al. Pasiphae
73 56 LVI || S/2011 J 2‡|| || ||align="right"|16.8 || style="text-align:right;"| 0001 1 align="right"| 1.5 ≈ 0.00015 align="right"|24114700 765.03 −765.03 align="right"| 152.125 0.1729 2011 Sheppard et al. Pasiphae
74 B   S/2003 J 9♥
2003 J 9 Gladman CFHT crop.gif
16.9 0001 1 style="text-align:right;"| 1.5 ≈ 0.00015 align="right"| 24168700 767.60 −767.60 align="right"| 166.334 0.1702 2003 Sheppard et al. Carme
75 19 XIX Megaclite /ˌmɛɡəˈklt/
Megaclite-Jewitt-CFHT-annotated.gif
15.0 0005 5 align="right"| 210 ≈ 0.021 align="right"| 24212300 769.68 −769.68 align="right"| 145.574 0.3139 2000 Sheppard et al. Pasiphae
76 41 XLI Aoede /ˈd/ 15.6 0004 4 style="text-align:right;"| 90 ≈ 0.009 align="right"| 24283000 773.05 −773.05 align="right"| 151.908 0.3131 2003 Sheppard et al. Pasiphae
77 C   S/2003 J 23‡
S2003j23ccircle.gif
16.6 0002 2 align="right"| 15 ≈ 0.0015 align="right"| 24678200 792.00 −792.00 align="right"| 146.155 0.3208 2003 Sheppard et al. Pasiphae
78 17 XVII Callirrhoe /kəˈlɪr/
S1999j1.jpg
13.9 0010 9.6 align="right"| 870 ≈ 0.087 align="right"| 24692400 792.69 −792.69 align="right"| 149.792 0.3562 1999 Scotti et al. Pasiphae
79 09 IX Sinope /sɪˈnp/
Sinopé.jpg
11.1 0035 35 style="text-align:right;"| 75000 ≈ 7.5 align="right"| 24864100 800.97 −800.97 align="right"| 158.597 0.1669 1914 Nicholson Pasiphae

Exploration

The orbit and motion of the Galilean moons around Jupiter, as captured by JunoCam aboard the Juno spacecraft.

The first spacecraft to visit Jupiter were Pioneer 10 in 1973, and Pioneer 11 a year later, taking low-resolution images of the four Galilean moons and returning data on their atmospheres and radiation belts.[53] The Voyager 1 and Voyager 2 probes visited Jupiter in 1979, discovering the volcanic activity on Io and the presence of water ice on the surface of Europa. The Cassini probe to Saturn flew by Jupiter in 2000 and collected data on interactions of the Galilean moons with Jupiter's extended atmosphere. The New Horizons spacecraft flew by Jupiter in 2007 and made improved measurements of its satellites' orbital parameters.

The Galileo spacecraft was the first to enter orbit around Jupiter, arriving in 1995 and studying it until 2003. During this period, Galileo gathered a large amount of information about the Jovian system, making close approaches to all of the Galilean moons and finding evidence for thin atmospheres on three of them, as well as the possibility of liquid water beneath the surfaces of Europa, Ganymede, and Callisto. It also discovered a magnetic field around Ganymede.

Ganymede taken by Juno during its 34th perijove.

In 2016, the Juno spacecraft imaged the Galilean moons from above their orbital plane as it approached Jupiter orbit insertion, creating a time-lapse movie of their motion.[54]

See also

Notes

  1. For comparison, the area of a sphere with diameter 250 km is about the area of Senegal and comparable to the area of Belarus , Syria and Uruguay. The area of a sphere with a diameter of 5 km is about the area of Guernsey and somewhat more than the area of San Marino. (But note that these smaller moons are not spherical.)
  2. Jupiter Mass of 1.8986 × 1027 kg / Mass of Galilean moons 3.93 × 1023 kg = 4,828
  3. Order refers to the position among other moons with respect to their average distance from Jupiter.
  4. Label refers to the Roman numeral attributed to each moon in order of their naming.
  5. Diameters with multiple entries such as "60 × 40 × 34" reflect that the body is not a perfect spheroid and that each of its dimensions has been measured well enough.
  6. Periods with negative values are retrograde.
  7. "?" refers to group assignments that are not considered sure yet.

References

  1. 1.0 1.1 1.2 1.3 1.4 Scott S. Sheppard. "Jupiter's Known Satellites". Departament of Terrestrial Magnetism at Carniege Institution for science. https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons. 
  2. 2.0 2.1 2.2 2.3 "A dozen new moons of Jupiter discovered, including one "oddball"" (in en). Carnegie Institution for Science. 16 July 2018. https://carnegiescience.edu/news/dozen-new-moons-jupiter-discovered-including-one-%E2%80%9Coddball%E2%80%9D. 
  3. https://skyandtelescope.org/astronomy-news/amateur-astronomer-discovers-new-moon-of-jupiter/
  4. 4.0 4.1 4.2 4.3 4.4 Canup, Robert M.; Ward, William R. (2009). "Origin of Europa and the Galilean Satellites". Europa. University of Arizona Press (in press). Bibcode2009euro.book...59C. 
  5. Alibert, Y.; Mousis, O.; Benz, W. (2005). "Modeling the Jovian subnebula I. Thermodynamic conditions and migration of proto-satellites". Astronomy & Astrophysics 439 (3): 1205–13. doi:10.1051/0004-6361:20052841. Bibcode2005A&A...439.1205A. 
  6. 6.0 6.1 Chown, Marcus (7 March 2009). "Cannibalistic Jupiter ate its early moons". New Scientist. https://www.newscientist.com/article/mg20126984.300-cannibalistic-jupiter-ate-its-early-moons.html. 
  7. Jewitt, David; Haghighipour, Nader (2007). "Irregular Satellites of the Planets: Products of Capture in the Early Solar System". Annual Review of Astronomy and Astrophysics 45 (1): 261–95. doi:10.1146/annurev.astro.44.051905.092459. Bibcode2007ARA&A..45..261J. http://www.ifa.hawaii.edu/~jewitt/papers/2007/JH07.pdf. 
  8. Xi, Zezong Z. (February 1981). "The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo". Acta Astrophysica Sinica 1 (2): 87. Bibcode1981AcApS...1...85X. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTWL198102000.htm. 
  9. Galilei, Galileo (1989). Translated and prefaced by Albert Van Helden. ed. Sidereus Nuncius. Chicago & London: University of Chicago Press. pp. 14–16. ISBN 0-226-27903-0. https://archive.org/details/sidereusnunciuso00gali. 
  10. Van Helden, Albert (March 1974). "The Telescope in the Seventeenth Century". Isis (The University of Chicago Press on behalf of The History of Science Society) 65 (1): 38–58. doi:10.1086/351216. 
  11. Pasachoff, Jay M. (2015). "Simon Marius's Mundus Iovialis: 400th Anniversary in Galileo's Shadow". Journal for the History of Astronomy 46 (2): 218–234. doi:10.1177/0021828615585493. Bibcode2015AAS...22521505P. 
  12. Barnard, E. E. (1892). "Discovery and Observation of a Fifth Satellite to Jupiter". Astronomical Journal 12: 81–85. doi:10.1086/101715. Bibcode1892AJ.....12...81B. 
  13. Barnard, E. E. (9 January 1905). "Discovery of a Sixth Satellite of Jupiter". Astronomical Journal 24 (18): 154B. doi:10.1086/103654. Bibcode1905AJ.....24S.154.. 
  14. Perrine, C. D. (1905). "The Seventh Satellite of Jupiter". Publications of the Astronomical Society of the Pacific 17 (101): 62–63. doi:10.1086/121624. Bibcode1905PASP...17...56.. 
  15. Melotte, P. J. (1908). "Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich". Monthly Notices of the Royal Astronomical Society 68 (6): 456–457. doi:10.1093/mnras/68.6.456. Bibcode1908MNRAS..68..456.. 
  16. Nicholson, S. B. (1914). "Discovery of the Ninth Satellite of Jupiter". Publications of the Astronomical Society of the Pacific 26 (1): 197–198. doi:10.1086/122336. PMID 16586574. Bibcode1914PASP...26..197N. 
  17. Nicholson, S.B. (1938). "Two New Satellites of Jupiter". Publications of the Astronomical Society of the Pacific 50 (297): 292–293. doi:10.1086/124963. Bibcode1938PASP...50..292N. 
  18. Nicholson, S. B. (1951). "An unidentified object near Jupiter, probably a new satellite". Publications of the Astronomical Society of the Pacific 63 (375): 297–299. doi:10.1086/126402. Bibcode1951PASP...63..297N. 
  19. Kowal, C. T. (1974). "Thirteenth satellite of Jupiter". Astronomical Journal 80: 460–464. doi:10.1086/111766. Bibcode1975AJ.....80..460K. 
  20. Marsden, Brian G. (3 October 1975). "Probable New Satellite of Jupiter" (discovery telegram sent to the IAU). IAU Circular (Cambridge, US: Smithsonian Astrophysical Observatory) 2845. http://www.cbat.eps.harvard.edu/iauc/02800/02845.html. Retrieved 8 January 2011. 
  21. Synnott, S.P. (1980). "1979J2: The Discovery of a Previously Unknown Jovian Satellite". Science 210 (4471): 786–788. doi:10.1126/science.210.4471.786. PMID 17739548. Bibcode1980Sci...210..786S. 
  22. 22.0 22.1 22.2 22.3 22.4 22.5 Gazetteer of Planetary Nomenclature Planet and Satellite Names and Discoverers International Astronomical Union (IAU)
  23. 23.0 23.1 23.2 23.3 23.4 Sheppard, Scott S.; Jewitt, David C. (5 May 2003). "An abundant population of small irregular satellites around Jupiter". Nature 423 (6937): 261–263. doi:10.1038/nature01584. PMID 12748634. Bibcode2003Natur.423..261S. 
  24. 24.0 24.1 Williams, Matt (14 September 2015). "How Many Moons Does Jupiter Have? - Universe Today" (in en-US). Universe Today. https://www.universetoday.com/52061/moons-of-jupiter/. 
  25. Bennett, Jay (13 June 2017). "Jupiter Officially Has Two More Moons" (in en-US). Popular Mechanics. https://www.popularmechanics.com/space/solar-system/a26909/jupiter-officially-has-two-more-moons/. 
  26. 26.0 26.1 Schilling, Govert (8 September 2020). "Study Suggests Jupiter Could Have 600 Moons". Sky & Telescope. https://skyandtelescope.org/astronomy-news/jupiter-could-have-600-moons/. 
  27. Ashton, Edward; Beaudoin, Matthew; Gladman, Brett (September 2020). "The Population of Kilometer-scale Retrograde Jovian Irregular Moons". The Planetary Science Journal 1 (2): 52. doi:10.3847/PSJ/abad95. Bibcode2020arXiv200903382A. https://iopscience.iop.org/article/10.3847/PSJ/abad95/pdf. 
  28. 28.0 28.1 Marazzini, C. (2005). "The names of the satellites of Jupiter: from Galileo to Simon Marius" (in it). Lettere Italiane 57 (3): 391–407. 
  29. Marazzini, Claudio (2005). "I nomi dei satelliti di Giove: da Galileo a Simon Marius (The names of the satellites of Jupiter: from Galileo to Simon Marius)". Lettere Italiane 57 (3): 391–407. 
  30. Nicholson, Seth Barnes (April 1939). "The Satellites of Jupiter". Publications of the Astronomical Society of the Pacific 51 (300): 85–94. doi:10.1086/125010. Bibcode1939PASP...51...85N. 
  31. Owen, Tobias (September 1976). "Jovian Satellite Nomenclature". Icarus 29 (1): 159–163. doi:10.1016/0019-1035(76)90113-5. Bibcode1976Icar...29..159O. 
  32. Sagan, Carl (April 1976). "On Solar System Nomenclature". Icarus 27 (4): 575–576. doi:10.1016/0019-1035(76)90175-5. Bibcode1976Icar...27..575S. 
  33. Payne-Gaposchkin, Cecilia; Haramundanis, Katherine (1970). Introduction to Astronomy. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0-13-478107-4. 
  34. 34.0 34.1 Marsden, Brian G. (3 October 1975). "Satellites of Jupiter". IAU Circular 2846. http://www.cbat.eps.harvard.edu/iauc/02800/02846.html#Item6. Retrieved 8 January 2011. 
  35. Antonietta Barucci, M. (2008). "Irregular Satellites of the Giant Planets". The Solar System Beyond Neptune. p. 414. ISBN 9780816527557. http://home.dtm.ciw.edu/users/sheppard/pub/Nicholson2008KBOBook.pdf. Retrieved 22 July 2017. 
  36. "IAU Rules and Conventions". Working Group for Planetary System Nomenclature. U.S. Geological Survey. https://planetarynames.wr.usgs.gov/Page/Rules. 
  37. Anderson, J.D. et al. (2005). "Amalthea's Density Is Less Than That of Water". Science 308 (5726): 1291–1293. doi:10.1126/science.1110422. PMID 15919987. Bibcode2005Sci...308.1291A. 
  38. Burns, J. A. et al. (2004). "Jupiter's Ring-Moon System". in Bagenal, Fran. Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. 
  39. Burns, J. A. et al. (1999). "The Formation of Jupiter's Faint Rings". Science 284 (5417): 1146–1150. doi:10.1126/science.284.5417.1146. PMID 10325220. Bibcode1999Sci...284.1146B. https://semanticscholar.org/paper/b3a12ea33e2c8442a4d7058edaef96599dba4b13. 
  40. Canup, Robin M.; Ward, William R. (2002). "Formation of the Galilean Satellites: Conditions of Accretion". The Astronomical Journal 124 (6): 3404–3423. doi:10.1086/344684. Bibcode2002AJ....124.3404C. http://www.boulder.swri.edu/~robin/cw02final.pdf. 
  41. 41.0 41.1 41.2 41.3 Grav, T.; Holman, M.; Gladman, B.; Aksnes K. (2003). "Photometric survey of the irregular satellites". Icarus 166 (1): 33–45. doi:10.1016/j.icarus.2003.07.005. Bibcode2003Icar..166...33G. 
  42. Sheppard, Scott S.; Jewitt, David C.; Porco, Carolyn (2004). "Jupiter's outer satellites and Trojans". in Fran Bagenal. Jupiter. The planet, satellites and magnetosphere. 1. Cambridge, UK: Cambridge University Press. pp. 263–280. ISBN 0-521-81808-7. http://www.ifa.hawaii.edu/~jewitt/papers/JUPITER/JSP.2003.pdf. 
  43. Nesvorný, David; Beaugé, Cristian; Dones, Luke (2004). "Collisional Origin of Families of Irregular Satellites". The Astronomical Journal 127 (3): 1768–1783. doi:10.1086/382099. Bibcode2004AJ....127.1768N. http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf. 
  44. 44.0 44.1 Brozović, Marina; Jacobson, Robert A. (March 2017). "The Orbits of Jupiter's Irregular Satellites". The Astronomical Journal 153 (4): 147. doi:10.3847/1538-3881/aa5e4d. Bibcode2017AJ....153..147B. 
  45. "HORIZONS Web-Interface". Horizons output. Jet Propulsion Laboratory. https://ssd.jpl.nasa.gov/horizons.cgi#top.  ("Ephemeris Type" select "Orbital Elements"  · Set "Time Span" to 2020-Dec-17)
  46. Hecht, Jeff (11 January 2021). "Amateur Astronomer Finds "Lost" Moons of Jupiter". Sky & Telescope. https://skyandtelescope.org/astronomy-news/amateur-astronomer-finds-lost-moons-of-jupiter/. 
  47. 47.0 47.1 47.2 "Natural Satellites Ephemeris Service". IAU: Minor Planet Center. http://www.minorplanetcenter.org/iau/NatSats/NaturalSatellites.html. "Note: some semi-major axis were computed using the µ value, while the eccentricities were taken using the inclination to the local Laplace plane" 
  48. "Amalthea". Merriam-Webster Dictionary. https://www.merriam-webster.com/dictionary/Amalthea. 
  49. 49.0 49.1 49.2 49.3 Siedelmann P.K.; Abalakin V.K.; Bursa, M.; Davies, M.E. et al. (2000). The Planets and Satellites 2000 (Report). IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. http://www.hnsky.org/iau-iag.htm. Retrieved 31 August 2008. 
  50. "Europa - definition of Europa in English from the Oxford dictionary". OxfordDictionaries.com. https://www.oxforddictionaries.com/definition/english/europa. 
  51. "Ganymede - definition of Ganymede in English from the Oxford dictionary". OxfordDictionaries.com. https://www.oxforddictionaries.com/definition/english/ganymede. 
  52. "Ganymede". Merriam-Webster Dictionary. https://www.merriam-webster.com/dictionary/Ganymede. 
  53. Fillius, Walker; McIlwain, Carl; Mogro‐Campero, Antonio; Steinberg, Gerald (1976). "Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter" (in en). Geophysical Research Letters 3 (1): 33–36. doi:10.1029/GL003i001p00033. ISSN 1944-8007. Bibcode1976GeoRL...3...33F. 
  54. Juno Approach Movie of Jupiter and the Galilean Moons, NASA, July 2016

External links

Template:Featured list is only for Wikipedia:Featured lists.