Physics:Timeline of condensed matter physics

From HandWiki
Revision as of 04:51, 5 February 2024 by Gametune (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: None

This article lists the main historical events in the history of condensed matter physics. This branch of physics focuses on understanding and studying the physical properties and transitions between phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter.

This timeline includes developments in subfields of condensed matter physics such as theoretical crystallography, solid-state physics, soft matter physics, mesoscopic physics, material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials.

Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.[1]

For history of fluid mechanics, see timeline of fluid and continuum mechanics.

Before quantum mechanics

Prehistory

  • 7000-3300 BC – New Stone Age: humans develop pottery and tools from stone and flint.[2]
  • 3300-1200 BC – Bronze Age: mixing copper and tin, provided the development of development of bronze tools.[3]
  • 1200-300 BC- Iron Age: bronze tools are replaced with iron and steel.[4]

Antiquity

A piece of magnetite with permanent magnetic properties were noticed already in Ancient Greece

Classical theories before the 19th century

  • 1611 – Johannes Kepler first states the Kepler conjecture about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements.[11]
  • 1621 – Willebrord Snellius reformulates the laws of refraction and reflection of light into Snell's law.[12]
  • 1660 – Robert Hooke postulates the simplest equation of linear elasticity known as Hooke's law.[13]
  • 1687 – Isaac Newton postulates the Newton's laws of motion.[14]
  • 1778 – Diamagnetism was first discovered when Anton Brugmans observed in 1778 that bismuth was repelled by magnetic fields.[15]
  • 1781– Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[16]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[17][18]

19th century

Schema of the classical Hall effect discovered in 1879, where a voltage is created perpendicular to the current in a circuit due to the influence of a magnetic field.

20th century

Paul Drude, author of the Drude model in 1900. He understood that thermal properties of metals could be understood as a gas of free electrons.

Early 1900s

Second half of the 20th century

The liquid helium is in the superfluid phase. Discovered by Pyotr Kapitsa in 1938. First theoretically model with Ginzburg–Landau theory in 1950.
Graphene: a single atomic layer of graphite first produced in 2004.

21st century

See also

References

  1. 1.0 1.1 "Philip Anderson". Princeton University. http://www.princeton.edu/physics/people/display_person.xml?netid=pwa&display=faculty. 
  2. "Hand tool - Neolithic, Stone, Flint | Britannica" (in en). https://www.britannica.com/technology/hand-tool/Neolithic-tools. 
  3. "Bronze Age" (in en). 2018-01-02. https://www.history.com/topics/pre-history/bronze-age. 
  4. "Iron Age" (in en). 2018-01-03. https://www.history.com/topics/pre-history/iron-age. 
  5. 5.0 5.1 5.2 Mattis, Daniel C. (2006-03-10) (in en). Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods. World Scientific Publishing Company. ISBN 978-981-310-222-4. https://books.google.com/books?id=9EQyDwAAQBAJ. 
  6. Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Publishing Group, p. 1, ISBN 978-0-313-33358-3 
  7. Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 9-8102-4471-1 
  8. Harvey, George (2006). "A New History of Western Philosophy". Ancient Philosophy 26 (1): 226–229. doi:10.5840/ancientphil200626156. ISSN 0740-2007. http://dx.doi.org/10.5840/ancientphil200626156. 
  9. "Aristotle - Logic, Metaphysics, Ethics | Britannica" (in en). https://www.britannica.com/biography/Aristotle/Philosophy-of-mind. 
  10. Smith, A. Mark (1982). "Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of "Saving the Appearances" and its Limitations". Archive for History of Exact Sciences 26 (3): 221–240. doi:10.1007/BF00348501. ISSN 0003-9519. https://www.jstor.org/stable/41133649. 
  11. Weisstein, Eric W.. "Kepler Conjecture" (in en). https://mathworld.wolfram.com/. 
  12. "Snell's law | Definition, Formula, & Facts | Britannica" (in en). 2023-09-12. https://www.britannica.com/science/Snells-law. 
  13. "Hooke's law | Description & Equation | Britannica" (in en). 11 October 2023. https://www.britannica.com/science/Hookes-law. 
  14. American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1. https://books.google.com/books?id=yKUagx8PB_EC&pg=PA428. 
  15. Gerald Küstler (2007). "Diamagnetic Levitation – Historical Milestones". Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 52, 3: 265–282. http://revue.elth.pub.ro/viewpdf.php?id=55. 
  16. Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  17. Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  18. Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  19. "Alessandro Volta | Biography, Facts, Battery, & Invention | Britannica" (in en). 2023-09-25. https://www.britannica.com/biography/Alessandro-Volta. 
  20. "Atom - Dalton, Bohr, Rutherford | Britannica" (in en). https://www.britannica.com/science/atom/The-beginnings-of-modern-atomic-theory. 
  21. Bain, Ashim Kumar (2019-05-29) (in en). Crystal Optics: Properties and Applications. John Wiley & Sons. ISBN 978-3-527-82303-1. https://books.google.com/books?id=5_GaDwAAQBAJ&dq=birefringence+history+brewster&pg=PA28. 
  22. "Dulong–Petit law | Thermodynamics, Heat Capacity, Specific Heat | Britannica" (in en). https://www.britannica.com/science/Dulong-Petit-law. 
  23. "Seebeck effect | Thermoelectricity, Temperature Gradients & Heat | Britannica" (in en). https://www.britannica.com/science/Seebeck-effect. 
  24. Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  25. "Ohm's law | Physics, Electric Current, Voltage | Britannica" (in en). 2023-09-05. https://www.britannica.com/science/Ohms-law. 
  26. "Peltier effect | Definition, Discovery, & Facts | Britannica" (in en). 2023-09-26. https://www.britannica.com/science/Peltier-effect. 
  27. Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  28. "James Prescott Joule | Biography & Facts | Britannica" (in en). 2023-10-07. https://www.britannica.com/biography/James-Prescott-Joule. 
  29. "Faraday effect | Magnetic Field, Electromagnetic Induction & Polarization | Britannica" (in en). https://www.britannica.com/science/Faraday-effect. 
  30. Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  31. Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  32. Franz, R.; Wiedemann, G. (1853). "Ueber die Wärme-Leitungsfähigkeit der Metalle" (in de). Annalen der Physik und Chemie 165 (8): 497–531. doi:10.1002/andp.18531650802. Bibcode1853AnP...165..497F. https://onlinelibrary.wiley.com/doi/10.1002/andp.18531650802. 
  33. "Thomson effect | Thermal Conduction, Heat Transfer & Joule-Thomson | Britannica" (in en). https://www.britannica.com/science/Thomson-effect. 
  34. 34.0 34.1 34.2 34.3 34.4 34.5 34.6 Peacock 2008, pp. 175–183
  35. "Who was James Clerk Maxwell?". https://clerkmaxwellfoundation.org/html/about_maxwell.html. 
  36. Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
  37. Lorenz, L. (1872). "Bestimmung der Wärmegrade in absolutem Maasse" (in de). Annalen der Physik und Chemie 223 (11): 429–452. doi:10.1002/andp.18722231107. Bibcode1872AnP...223..429L. https://onlinelibrary.wiley.com/doi/10.1002/andp.18722231107. 
  38. "Hall effect | Definition & Facts | Britannica" (in en). 2023-09-11. https://www.britannica.com/science/Hall-effect. 
  39. Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  40. "Piezoelectricity | Piezoelectricity, Acoustic Wave, Ultrasound | Britannica" (in en). 2023-09-01. https://www.britannica.com/science/piezoelectricity. 
  41. "Thermionic emission | Thermionic Emission, Vacuum Tubes, Electron Flow | Britannica" (in en). https://www.britannica.com/science/thermionic-emission. 
  42. "Photoelectric effect | Definition, Examples, & Applications | Britannica" (in en). 2023-10-09. https://www.britannica.com/science/photoelectric-effect. 
  43. Mitov, Michel (2014-05-19). "Liquid‐Crystal Science from 1888 to 1922: Building a Revolution" (in en). ChemPhysChem 15 (7): 1245–1250. doi:10.1002/cphc.201301064. ISSN 1439-4235. PMID 24482315. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201301064. 
  44. Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  45. Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  46. Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 10. 
  47. "Milestone 1 : Nature Milestones in Spin" (in en). https://www.nature.com/milestones/milespin/full/milespin01.html. 
  48. "J.J. Thomson | Biography, Nobel Prize, & Facts | Britannica" (in en). 2023-08-26. https://www.britannica.com/biography/J-J-Thomson. 
  49. Dressel, Martin; Grüner, George (2002-01-17). Electrodynamics of Solids: Optical Properties of Electrons in Matter (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511606168.008. ISBN 978-0-521-59253-6. https://www.cambridge.org/core/product/identifier/9780511606168/type/book. 
  50. See J. Valasek (1920). "Piezoelectric and allied phenomena in Rochelle salt". Physical Review 15 (6): 537. doi:10.1103/PhysRev.15.505. Bibcode1920PhRv...15..505.. https://zenodo.org/record/1960072.  and J. Valasek (1921). "Piezo-Electric and Allied Phenomena in Rochelle Salt". Physical Review 17 (4): 475. doi:10.1103/PhysRev.17.475. Bibcode1921PhRv...17..475V. https://zenodo.org/record/1528280. 
  51. "The Nobel Prize in Chemistry 1953" (in en-US). https://www.nobelprize.org/prizes/chemistry/1953/staudinger/facts/. 
  52. Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion" (in en). Mathematical Proceedings of the Cambridge Philosophical Society 24 (1): 111–132. doi:10.1017/S0305004100011920. ISSN 0305-0041. Bibcode1928PCPS...24..111H. https://www.cambridge.org/core/product/identifier/S0305004100011920/type/journal_article. 
  53. Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
  54. Rjabinin, J. N.; Shubnikow, L. W. (1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys". Nature 135 (3415): 581. doi:10.1038/135581a0. Bibcode1935Natur.135..581R. 
  55. Hartree, D. R.; Hartree, W. (May 1935). "Self-consistent field, with exchange, for beryllium" (in en). Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150 (869): 9–33. doi:10.1098/rspa.1935.0085. ISSN 0080-4630. Bibcode1935RSPSA.150....9H. https://royalsocietypublishing.org/doi/10.1098/rspa.1935.0085. 
  56. Casimir, H. B. G.; Polder, D. (1948-02-15). "The Influence of Retardation on the London–van der Waals Forces" (in en). Physical Review 73 (4): 360–372. doi:10.1103/PhysRev.73.360. ISSN 0031-899X. Bibcode1948PhRv...73..360C. 
  57. Casimir, H. B. G. (1948). "On the attraction between two perfectly conducting plates". Proc. Kon. Ned. Akad. Wet. 51: 793. https://www.dwc.knaw.nl/DL/publications/PU00018547.pdf. 
  58. Ehrenberg, W; Siday, RE (1949). "The Refractive Index in Electron Optics and the Principles of Dynamics". Proceedings of the Physical Society B 62 (1): 8–21. doi:10.1088/0370-1301/62/1/303. Bibcode1949PPSB...62....8E. 
  59. 59.0 59.1 "December 1958: Invention of the Laser" (in en). http://www.aps.org/publications/apsnews/200312/history.cfm. 
  60. J. C. Slater; G. F. Koster (1954). "Simplified LCAO method for the Periodic Potential Problem". Physical Review 94 (6): 1498–1524. doi:10.1103/PhysRev.94.1498. Bibcode1954PhRv...94.1498S. 
  61. Geballe, T. H.; Hulm, J. K. (1996). Bernd Theodor Matthias 1918–1990. National Academy of Science. http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/matthias-bernd.pdf. 
  62. Dresselhaus, G. (1955-10-15). "Spin–Orbit Coupling Effects in Zinc Blende Structures". Physical Review 100 (2): 580–586. doi:10.1103/PhysRev.100.580. Bibcode1955PhRv..100..580D. 
  63. Kubo, Ryogo (1957). "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems". J. Phys. Soc. Jpn. 12 (6): 570–586. doi:10.1143/JPSJ.12.570. http://journals.jps.jp/doi/pdf/10.1143/JPSJ.12.570. 
  64. Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao (1957). "Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance". J. Phys. Soc. Jpn. 12 (11): 1203–1211. doi:10.1143/JPSJ.12.1203. Bibcode1957JPSJ...12.1203K. 
  65. Rostky, George. "Micromodules: the ultimate package". http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html. 
  66. E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  67. Kamenev, Alex (2011). Field theory of non-equilibrium systems. Cambridge: Cambridge University Press. ISBN 9780521760829. OCLC 721888724. 
  68. W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder”, Physical Review Letters 9, 9 (1962), doi:10.1103/PhysRevLett.9.9
  69. Wagner, Herbert; Schollwoeck, Ulrich (2010-10-08). "Mermin-Wagner Theorem" (in en). Scholarpedia 5 (10): 9927. doi:10.4249/scholarpedia.9927. ISSN 1941-6016. Bibcode2010SchpJ...5.9927W. 
  70. Josephson, Paul R. (2010). Lenin's Laureate: Zhores Alferov's Life in Communist Science. MIT Press. ISBN 978-0-262-29150-7. https://books.google.com/books?id=WcXxCwAAQBAJ&pg=PA44. 
  71. Slyusar, V.I. (October 6–9, 2009). "Metamaterials on antenna solutions". 7th International Conference on Antenna Theory and Techniques ICATT’09. Lviv, Ukraine. pp. 19–24. http://www.slyusar.kiev.ua/019_024_ICATT_2009.pdf. 
  72. "Soft matter physics". https://www.iop.org/explore-physics/big-ideas-physics/soft-matter-physics. 
  73. Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics 6 (22): L422. doi:10.1088/0022-3719/6/22/007. Bibcode1973JPhC....6L.422M. 
  74. Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics 7 (24): L457. doi:10.1088/0022-3719/7/24/006. Bibcode1974JPhC....7L.457G. 
  75. Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520. 
  76. Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics 10 (3): L55–L58. doi:10.1088/0022-3719/10/3/004. Bibcode1977JPhC...10L..55M. 
  77. Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce (2016-12-23). "Observation of the topological soliton state in the Su–Schrieffer–Heeger model" (in en). Nature Communications 7 (1): 13986. doi:10.1038/ncomms13986. ISSN 2041-1723. PMID 28008924. Bibcode2016NatCo...713986M. 
  78. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. (1979-06-18). "Solitons in Polyacetylene" (in en). Physical Review Letters 42 (25): 1698–1701. doi:10.1103/PhysRevLett.42.1698. ISSN 0031-9007. Bibcode1979PhRvL..42.1698S. https://link.aps.org/doi/10.1103/PhysRevLett.42.1698. 
  79. Linke, Heiner (2023). "Quantum dots — seeds of nanoscience". Swedish Academy of Science. https://www.nobelprize.org/uploads/2023/10/advanced-chemistryprize2023.pdf. 
  80. Lee, P. A.; Stone, A. Douglas (1985-10-07). "Universal Conductance Fluctuations in Metals" (in en). Physical Review Letters 55 (15): 1622–1625. doi:10.1103/PhysRevLett.55.1622. ISSN 0031-9007. PMID 10031872. Bibcode1985PhRvL..55.1622L. https://link.aps.org/doi/10.1103/PhysRevLett.55.1622. 
  81. van Houten, Henk; Beenakker, Carlo (1996-07-01). "Quantum Point Contacts" (in en). Physics Today 49 (7): 22–27. doi:10.1063/1.881503. ISSN 0031-9228. Bibcode1996PhT....49g..22V. https://pubs.aip.org/physicstoday/article/49/7/22/409107/Quantum-Point-ContactsThe-quantization-of. 
  82. Schwab, K.; E. A. Henriksen; J. M. Worlock; M. L. Roukes (2000). "Measurement of the quantum of thermal conductance". Nature 404 (6781): 974–7. doi:10.1038/35010065. PMID 10801121. Bibcode2000Natur.404..974S. 
  83. Castelvecchi, Davide; Sanderson, Katharine (2023-10-03). "Physicists who built ultrafast 'attosecond' lasers win Nobel Prize" (in en). Nature 622 (7982): 225–227. doi:10.1038/d41586-023-03047-w. PMID 37789199. Bibcode2023Natur.622..225C. https://www.nature.com/articles/d41586-023-03047-w. 
  84. "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Nasa Science. February 12, 2004. https://science.nasa.gov/science-news/science-at-nasa/2004/12feb_fermi/. 
  85. "Graphene | Properties, Uses & Structure | Britannica" (in en). https://www.britannica.com/science/graphene. 
  86. "Scientists Discover How to Use Time Crystals to Power Superconductors | Weizmann USA". 2020-03-02. https://www.weizmann-usa.org/news-media/in-the-news/scientists-discover-how-to-use-time-crystals-to-power-superconductors/. 
  87. "Researchers map tiny twists in "magic-angle" graphene" (in en). 2020-05-08. https://news.mit.edu/2020/twists-magic-angle-graphene-map-0508.