Chemistry:Dimethyl sulfoxide

From HandWiki
Revision as of 01:33, 6 February 2024 by Ohm (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Organosulfur chemical compound used as a solvent
Dimethyl sulfoxide
Dimethylsulfoxid.svg
Stereo structural formula of dimethyl sulfoxide with an explicit electron pair and assorted dimensions
Spacefill model of dimethyl sulfoxide
Sample of Dimethyl sulfoxide 01.jpg
A sample of dimethyl sulfoxide
Names
Preferred IUPAC name
(Methanesulfinyl)methane
Systematic IUPAC name
(Methanesulfinyl)methane (substitutive)
Dimethyl(oxido)sulfur (additive)
Other names
Methylsulfinylmethane
Methyl sulfoxide (2:1), Dermasorb[1]
Identifiers
3D model (JSmol)
Abbreviations DMSO, Me2SO
506008
ChEBI
ChEMBL
ChemSpider
DrugBank
EC Number
  • 200-664-3
1556
KEGG
MeSH Dimethyl+sulfoxide
RTECS number
  • PV6210000
UNII
Properties
C2H6OS
Molar mass 78.13 g·mol−1
Appearance Colourless liquid
Density 1.1004 g⋅cm−3
Melting point 19 °C (66 °F; 292 K)
Boiling point 189 °C (372 °F; 462 K)
Miscible
Solubility in Diethyl ether Not soluble
Vapor pressure 0.556 millibars or 0.0556 kPa at 20 °C[2]
Acidity (pKa) 35[3]
1.479
εr = 48
Viscosity 1.996 cP at 20 °C
Structure
Cs
Trigonal pyramidal
3.96 D
Pharmacology
1=ATC code }} G04BX13 (WHO) M02AX03 (WHO)
Hazards
Main hazards Irritant
Safety data sheet Sigma-Aldrich SDS
NFPA 704 (fire diamond)
Flammability code 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
2
1
0
Flash point 89 °C (192 °F; 362 K)
Related compounds
Related sulfoxides
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. It has a relatively high boiling point. DMSO has the unusual property that many individuals perceive a garlic-like taste in the mouth after DMSO makes contact with their skin.[5]

In terms of chemical structure, the molecule has idealized Cs symmetry. It has a trigonal pyramidal molecular geometry consistent with other three-coordinate S(IV) compounds,[6] with a nonbonded electron pair on the approximately tetrahedral sulfur atom.

Synthesis and production

Dimethyl sulfoxide was first synthesized in 1866 by the Russian scientist Alexander Zaytsev, who reported his findings in 1867.[7] Dimethyl sulfoxide is produced industrially from dimethyl sulfide, a by-product of the Kraft process, by oxidation with oxygen or nitrogen dioxide.[8]

2 C
2
H
6
S + O
2
→ 2 C
2
H
6
SO
4 C
2
H
6
S + 2 NO
2
→ 4 C
2
H
6
SO + N
2

Reactions

Reactions with electrophiles

The sulfur center in DMSO is nucleophilic toward soft electrophiles and the oxygen is nucleophilic toward hard electrophiles. With methyl iodide it forms trimethylsulfoxonium iodide, [(CH3)3SO]I:

(CH3)2SO + CH3I → [(CH3)3SO]I

This salt can be deprotonated with sodium hydride to form the sulfur ylide:

[(CH3)3SO]I + NaH → (CH3)2S(CH2)O + NaI + H2

Acidity

The methyl groups of DMSO are only weakly acidic, with a pKa = 35. For this reason, the basicities of many weakly basic organic compounds have been examined in this solvent.

Deprotonation of DMSO requires strong bases like lithium diisopropylamide and sodium hydride. Stabilization of the resultant carbanion is provided by the S(O)R group. The sodium derivative of DMSO formed in this way is referred to as dimsyl sodium. It is a base, e.g., for the deprotonation of ketones to form sodium enolates, phosphonium salts to form Wittig reagents, and formamidinium salts to form diaminocarbenes. It is also a potent nucleophile.

Oxidant

In organic synthesis, DMSO is used as a mild oxidant.[9] It forms the basis of several selective sulfonium-based oxidation reactions, including the Pfitzner–Moffatt oxidation, Corey–Kim oxidation, and Swern oxidation.[10] The Kornblum oxidation is conceptually similar. These all involve formation of an intermediate sulfonium species (R2S+X where X is a heteroatom).

Ligand and Lewis base

Related to its ability to dissolve many salts, DMSO is a common ligand in coordination chemistry.[11] Illustrative is the complex dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) (RuCl2(dmso)4). In this complex, three DMSO ligands are bonded to ruthenium through sulfur. The fourth DMSO is bonded through oxygen. In general, the oxygen-bonded mode is more common.

In carbon tetrachloride solutions DMSO functions as a Lewis base with a variety of Lewis acids such as I2, phenols, trimethyltin chloride, metalloporphyrins, and the dimer Rh2Cl2(CO)4. The donor properties are discussed in the ECW model. The relative donor strength of DMSO toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.[12][13]

Applications

Solvent

Distillation of DMSO requires a partial vacuum to achieve a lower boiling point.

DMSO is a polar aprotic solvent and is less toxic than other members of this class, such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, and hexamethylphosphoramide (HMPA). DMSO is frequently used as a solvent for chemical reactions involving salts, most notably Finkelstein reactions and other nucleophilic substitutions. It is also extensively used as an extractant in biochemistry and cell biology.[14] Because DMSO is only weakly acidic, it tolerates relatively strong bases and as such has been extensively used in the study of carbanions. A set of non-aqueous pKa values (C-H, O-H, S-H and N-H acidities) for thousands of organic compounds have been determined in DMSO solution.[15][16]

Because of its high boiling point, 189 °C (372 °F), DMSO evaporates slowly at normal atmospheric pressure. Samples dissolved in DMSO cannot be as easily recovered compared to other solvents, as it is very difficult to remove all traces of DMSO by conventional rotary evaporation. One technique to fully recover samples is removal of the organic solvent by evaporation followed by addition of water (to dissolve DMSO) and cryodesiccation to remove both DMSO and water. Reactions conducted in DMSO are often diluted with water to precipitate or phase-separate products. The relatively high freezing point of DMSO, 18.5 °C (65.3 °F), means that at, or just below, room temperature it is a solid, which can limit its utility in some chemical processes (e.g.,crystallization with cooling).

In its deuterated form (DMSO-d6), it is a useful solvent for NMR spectroscopy, again due to its ability to dissolve a wide range of analytes, the simplicity of its own spectrum, and its suitability for high-temperature NMR spectroscopic studies. Disadvantages to the use of DMSO-d6 are its high viscosity, which broadens signals, and its hygroscopicity, which leads to an overwhelming H2O resonance in the 1H-NMR spectrum. It is often mixed with CDCl3 or CD2Cl2 for lower viscosity and melting points.

DMSO is used as a solvent in in vitro and in vivo drug testing.

DMSO is also used to dissolve test compounds in in vitro drug discovery[17][18] and drug design[19] screening programs, including high-throughput screening programs.[18][19] This is because it is able to dissolve both polar and nonpolar compounds,[17][19] can be used to maintain stock solutions of test compounds (important when working with a large chemical library),[18] is readily miscible with water and cell culture media, and has a high boiling point (this improves the accuracy of test compound concentrations by reducing room temperature evaporation).[17] One limitation with DMSO is that it can affect cell line growth and viability, with low DMSO concentrations sometimes stimulating cell growth, and high DMSO concentrations sometimes inhibiting or killing cells.[17]

DMSO is used as a vehicle in in vivo studies of test compounds too. It has, for example, been employed as a co-solvent to assist absorption of the flavonol glycoside Icariin in the nematode worm Caenorhabditis elegans.[20] As with its use in in vitro studies, DMSO has some limitations in animal models.[21][22] Pleiotropic effects can occur and, if DMSO control groups are not carefully planned, then solvent effects can falsely be attributed to the prospective drug.[21] For example, even a very low dose of DMSO has a powerful protective effect against paracetamol (acetaminophen)-induced liver injury in mice.[22]

In addition to the above, DMSO is finding increased use in manufacturing processes to produce microelectronic devices.[23] It is widely used to strip photoresist in TFT-LCD 'flat panel' displays and advanced packaging applications (such as wafer-level packaging / solder bump patterning). DMSO is an effective paint stripper too, being safer than many of the others such as nitromethane and dichloromethane.

Biology

DMSO is used in polymerase chain reaction (PCR) to inhibit secondary structures in the DNA template or the DNA primers. It is added to the PCR mix before reacting, where it interferes with the self-complementarity of the DNA, minimizing interfering reactions.[24]

DMSO in a PCR is applicable for supercoiled plasmids (to relax before amplification) or DNA templates with high GC-content (to decrease thermostability). For example, 10% final concentration of DMSO in the PCR mixture with Phusion decreases primer annealing temperature (i.e. primer melting temperature) by 5.5–6.0 °C (9.9–10.8 °F).[25]

It is well known as a reversible cell cycle arrester at phase G1 of human lymphoid cells.[26]

DMSO may also be used as a cryoprotectant, added to cell media to reduce ice formation and thereby prevent cell death during the freezing process.[27] Approximately 10% may be used with a slow-freeze method, and the cells may be frozen at −80 °C (−112 °F) or stored in liquid nitrogen safely.

In cell culture, DMSO is used to induce differentiation of P19 embryonic carcinoma cells into cardiomyocytes and skeletal muscle cells.

Medicine

Use of DMSO in medicine dates from around 1963, when an Oregon Health & Science University Medical School team, headed by Stanley Jacob, discovered it could penetrate the skin and other membranes without damaging them and could carry other compounds into a biological system. In medicine, DMSO is predominantly used as a topical analgesic, a vehicle for topical application of pharmaceuticals, as an anti-inflammatory, and an antioxidant.[28] Because DMSO increases the rate of absorption of some compounds through biological tissues, including skin, it is used in some transdermal drug delivery systems. Its effect may be enhanced with the addition of EDTA. It is frequently compounded with antifungal medications, enabling them to penetrate not just skin but also toenails and fingernails.[29]

DMSO has been examined for the treatment of numerous conditions and ailments, but the U.S. Food and Drug Administration (FDA) has approved its use only for the symptomatic relief of patients with interstitial cystitis.[30] A 1978 study concluded that DMSO brought significant relief to the majority of the 213 patients with inflammatory genitourinary disorders that were studied.[31] The authors recommended DMSO for genitourinary inflammatory conditions not caused by infection or tumor in which symptoms were severe or patients failed to respond to conventional therapy.

In interventional radiology, DMSO is used as a solvent for ethylene vinyl alcohol in the Onyx liquid embolic agent, which is used in embolization, the therapeutic occlusion of blood vessels.

In cryobiology, DMSO has been used as a cryoprotectant and is still an important constituent of cryoprotectant vitrification mixtures used to preserve organs, tissues, and cell suspensions. Without it, up to 90% of frozen cells will become inactive. It is particularly important in the freezing and long-term storage of embryonic stem cells and hematopoietic stem cells, which are often frozen in a mixture of 10% DMSO, a freezing medium, and 30% fetal bovine serum. In the cryogenic freezing of heteroploid cell lines (MDCK, VERO, etc.) a mixture of 10% DMSO with 90% EMEM (70% EMEM + 30% fetal bovine serum + antibiotic mixture) is used. As part of an autologous bone marrow transplant the DMSO is re-infused along with the patient's own hematopoietic stem cells.

DMSO is metabolized by disproportionation to dimethyl sulfide and dimethyl sulfone. It is subject to renal and pulmonary excretion. A possible side effect of DMSO is therefore elevated blood dimethyl sulfide, which may cause a blood borne halitosis symptom.

Alternative medicine

DMSO is marketed as an alternative medicine. Its popularity as an alternative cure is stated to stem from a 60 Minutes documentary in 1980 featuring an early proponent.[32] However, DMSO is an ingredient in some products listed by the U.S. FDA as fake cancer cures[33] and the FDA has had a running battle with distributors.[32] One such distributor is Mildred Miller, who promoted DMSO for a variety of disorders and was consequently convicted of Medicare fraud.[32]

The use of DMSO as an alternative treatment for cancer is of particular concern, as it has been shown to interfere with a variety of chemotherapy drugs, including cisplatin, carboplatin, and oxaliplatin.[34] There is insufficient evidence to support the hypothesis that DMSO has any effect,[35] and most sources agree that its history of side effects when tested warrants caution when using it as a dietary supplement, for which it is marketed heavily with the usual disclaimer.

Veterinary medicine

DMSO is commonly used in veterinary medicine as a liniment for horses, alone or in combination with other ingredients. In the latter case, often, the intended function of the DMSO is as a solvent, to carry the other ingredients across the skin. Also in horses, DMSO is used intravenously, again alone or in combination with other drugs. It is used alone for the treatment of increased intracranial pressure and/or cerebral edema in horses.[citation needed]

Taste

The perceived garlic taste upon skin contact with DMSO may be due to nonolfactory activation of TRPA1 receptors in trigeminal ganglia.[36] Unlike dimethyl and diallyl disulfides (which have odors resembling garlic), mono- and tri- sulfides (which typically have foul odors), and similar odiferous sulfur compounds, the pure chemical DMSO is odorless.

Safety

Toxicity

DMSO is a non-toxic solvent with a median lethal dose higher than ethanol (DMSO: LD50, oral, rat, 14,500 mg/kg;[37][38] ethanol: LD50, oral, rat, 7,060 mg/kg[39]).

Early clinical trials with DMSO were stopped because of questions about its safety, especially its ability to harm the eye. The most commonly reported side effects include headaches and burning and itching on contact with the skin. Strong allergic reactions have been reported.[full citation needed] DMSO can cause contaminants, toxins, and medicines to be absorbed through the skin, which may cause unexpected effects. DMSO is thought to increase the effects of blood thinners, steroids, heart medicines, sedatives, and other drugs. In some cases this could be harmful or dangerous.[40]

In Australia, was listed as a Schedule 4 (S4) Drug, and a company has been prosecuted for adding it to products as a preservative.[41] However, since 2018 it is now Schedule 6 (S6) in certain circumstances, including cosmetic preparations [42]

Because DMSO easily penetrates the skin, substances dissolved in DMSO may be quickly absorbed. Glove selection is important when working with DMSO. Butyl rubber, fluoroelastomer, neoprene, or thick (15 mil / 0.4  mm) latex gloves are recommended.[43] Nitrile gloves, which are very commonly used in chemical laboratories, may protect from brief contact but have been found to degrade rapidly with exposure to DMSO.[44]

On September 9, 1965, The Wall Street Journal reported that a manufacturer of the chemical warned that the death of an Irish woman after undergoing DMSO treatment for a sprained wrist may have been due to the treatment, although no autopsy was done, nor was a causal relationship established.[45] Clinical research using DMSO was halted and did not begin again until the National Academy of Sciences (NAS) published findings in favor of DMSO in 1972.[46] In 1978, the US FDA approved DMSO for treating interstitial cystitis. In 1980, the US Congress held hearings on claims that the FDA was slow in approving DMSO for other medical uses. In 2007, the US FDA granted "fast track" designation on clinical studies of DMSO's use in reducing brain tissue swelling following traumatic brain injury.[46] DMSO exposure to developing mouse brains can produce brain degeneration. This neurotoxicity could be detected at doses as low as 0.3 mL/kg, a level exceeded in children exposed to DMSO during bone marrow transplant.[47]

DMSO is connected to the death of Gloria Ramirez, also known as "the Toxic Lady". On the 19th of February 1994, Ramirez presented to an ER with severe heart palpitations, and while treating her, several members of staff fell ill, some severely. Some staff members required extended stays in hospital, and Ramirez herself died in hospital.[48] Ramirez is known to have used a DMSO cream for management of her cancer pain, which built up in her blood due to kidney failure.[49] One lab investigating the death and illnesses posited that the high levels of DMSO in Ramirez's blood broke down when exposed to air into dimethyl sulfate, a highly toxic gas, causing the staff illnesses, and possibly her own death.[50]

DMSO disposed into sewers can also cause odor problems in municipal effluents: waste water bacteria transform DMSO under hypoxic (anoxic) conditions into dimethyl sulfide (DMS) that has a strong disagreeable odor, similar to rotten cabbage.[51] However, chemically pure DMSO is odorless because of the lack of C-S-C (sulfide) and C-S-H (mercaptan) linkages. Deodorization of DMSO is achieved by removing the odorous impurities it contains.[52]

Explosion hazard

Dimethyl sulfoxide can produce an explosive reaction when exposed to acyl chlorides; at a low temperature, this reaction produces the oxidant for Swern oxidation.

DMSO can decompose at the boiling temperature of 189 °C at normal pressure, possibly leading to an explosion. The decomposition is catalyzed by acids and bases and therefore can be relevant at even lower temperatures. A strong to explosive reaction also takes place in combination with halogen compounds, metal nitrides, metal perchlorates, sodium hydride, periodic acid and fluorinating agents.[53]

See also

  • Varying oxidation of sulfur
    • Dimethyl sulfide (DMS), the corresponding sulfide, also produced by marine phytoplankton and emitted to the oceanic atmosphere where it is oxidized to DMSO, SO2 and sulfate
    • Dimethyl sulfone, commonly known as methylsulfonylmethane (MSM), a related chemical often marketed as a dietary supplement
  • Related compounds with methyl on oxygen
  • Gloria Ramirez, also known as the "Toxic Woman"

References

  1. DMSO (medication)
  2. "Dimethyl Sulfoxide (DMSO) -- Technical". Atofina Chemicals, inc. http://www.bulkmsm.com/research/msm/page12.htm. 
  3. "Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution". J. Am. Chem. Soc. 97 (24): 7006–7014. 1975. doi:10.1021/ja00857a010. 
  4. "Dimethyl sulfoxide" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/679#section=Safety-and-Hazards. 
  5. Drug Facts and Comparisons (56th ed.). St. Louis, Missouri: Wolters Kluwer Health.. 2002. p. 619. ISBN 978-1-57439-110-7. https://archive.org/details/drugfactscompari00kast/page/619. 
  6. "The Molecular and Crystal Structure of Dimethyl Sulfoxide, (H3C)2SO". Acta Crystallogr 21: 12–20. 1966. doi:10.1107/S0365110X66002263. 
  7. von Demselben (1867). "Ueber die Einwirkung von Saltpetersäure auf Schwefelmethyl und Schwefeläthyl". in Erlenmeyer, E. (in de). Annalen der Pharmacie. Meyer ; Winter. p. 148. https://books.google.com/books?id=uelSAAAAcAAJ&pg=PA148. 
  8. Roy, Kathrin-Maria (15 June 2000), "Sulfones and Sulfoxides", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, doi:10.1002/14356007.a25_487, ISBN 3527306730 
  9. "Dimethyl Sulfoxide Oxidations". Chemical Reviews 67 (3): 247–260. March 1967. doi:10.1021/cr60247a001. PMID 6042131. 
  10. "Oxidation of Alcohols by Activated Dimethyl Sulfoxide and Related Reactions: An Update". Synthesis 1990 (10): 857–870. 1990. doi:10.1055/s-1990-27036. 
  11. "Structure and bonding in metal sulfoxide complexes: An update". Coordination Chemistry Reviews 248 (3–4): 351–375. 2004. doi:10.1016/j.ccr.2004.02.005. 
  12. Laurence, Christian; Gal, Jean-François (2010). Lewis basicity and affinity scales : data and measurement. Chichester, West Sussex, U.K.: John Wiley. pp. 50–51. ISBN 978-0-470-74957-9. OCLC 428031803. 
  13. Cramer, R. E.; Bopp, T. T. (1977). "Graphical display of the enthalpies of adduct formation for Lewis acids and bases". Journal of Chemical Education 54: 612–613. doi:10.1021/ed054p612.  The plots shown in this paper used older parameters. Improved E&C parameters are listed in ECW model.
  14. "DMSO". exactantigen.com. http://www.exactantigen.com/review/DMSO.html. 
  15. "Equilibrium acidities in dimethyl sulfoxide solution". Accounts of Chemical Research 21 (12): 456–463. 1988. doi:10.1021/ar00156a004. 
  16. "Bordwell pKa Table (Acidity in DMSO)". http://www.chem.wisc.edu/areas/reich/pkatable/. 
  17. 17.0 17.1 17.2 17.3 "Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls". Pharmaceutical Research 37 (7): Article 125. June 2020. doi:10.1007/s11095-020-02849-1. PMID 32529587. https://zenodo.org/record/3909383. 
  18. 18.0 18.1 18.2 "Investigation of 3 industry-wide applied storage conditions for compound libraries". Journal of Biomolecular Screening 12 (1): 21–32. November 2007. doi:10.1177/1087057106295507. PMID 17099243. 
  19. 19.0 19.1 19.2 "In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions". Current Medicinal Chemistry 13 (2): 223–241. 2006. doi:10.2174/092986706775197917. PMID 16472214. 
  20. "Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans". PLOS ONE 6 (12): e28835. 2011. doi:10.1371/journal.pone.0028835. PMID 22216122. Bibcode2011PLoSO...628835C. 
  21. 21.0 21.1 "Biological actions of drug solvents". Periodicum Biologorum 113 (3): 311–320. Nov 2011. http://hrcak.srce.hr/74090. 
  22. 22.0 22.1 "Influence of small doses of various drug vehicles on acetaminophen-induced liver injury". Can J Physiol Pharmacol 88 (10): 980–87. Oct 2010. doi:10.1139/Y10-065. PMID 20962895. 
  23. "A Review of Microelectronic Manufacturing Applications Using DMSO-Based Chemistries". ECS Transactions 11 (2): 227–234. 2007. doi:10.1149/1.2779383. Bibcode2007ECSTr..11b.227K. 
  24. "The enhancement of PCR amplification by low molecular-weight sulfones". Gene 274 (1–2): 293–298. August 2001. doi:10.1016/S0378-1119(01)00621-7. PMID 11675022. 
  25. "Guidelines for PCR Optimization with Phusion High-Fidelity DNA Polymerase". https://www.neb.com/protocols/2012/06/01/guidelines-for-pcr-optimization-with-phusion-high-fidelity-dna-polymerase. 
  26. "Reversible G1 arrest in the cell cycle of human lymphoid cell lines by dimethyl sulfoxide". Exp. Cell Res. 187 (1): 4–10. 1990. doi:10.1016/0014-4827(90)90108-m. PMID 2298260. 
  27. "Principles of Cryopreservation". Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology. 368. Humana Press. 2007. 39–57. doi:10.1007/978-1-59745-362-2_3. ISBN 978-1-58829-377-0. 
  28. Johannes Geiss (2001). The century of space science. Kluwer Academic. p. 20. ISBN 978-0-7923-7195-3. https://books.google.com/books?id=22FJysl__WcC&pg=PA20. Retrieved 2011-08-07. 
  29. "Onychomycosis treated with a dilute povidone-iodine/dimethyl sulfoxide preparation". International Medical Case Reports Journal 8: 231–233. 2015-10-08. doi:10.2147/IMCRJ.S90775. PMID 26491374. 
  30. "Import Alert 62-06". http://www.accessdata.fda.gov/cms_ia/importalert_169.html. 
  31. "Dimethyl Sulfoxide in Treatment of Inflammatory Genitourinary Disorders". Urology 11 (3): 215–220. March 1978. doi:10.1016/0090-4295(78)90118-8. PMID 636125. http://www.dmso.org/articles/bladder/bladder1.htm. 
  32. 32.0 32.1 32.2 "DMSO". National Council Against Health Fraud. 24 November 2001. https://quackwatch.org/ncahf/articles/c-d/dmso/. 
  33. "187 Fake Cancer "Cures" Consumers Should Avoid". https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/EnforcementActivitiesbyFDA/ucm171057.htm. 
  34. "Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes". Cancer Research 74 (14): 3913–3922. July 2014. doi:10.1158/0008-5472.CAN-14-0247. PMID 24812268. 
  35. Saling, Joseph (20 June 2022). "DMSO: Uses and Risks". https://www.webmd.com/vitamins-and-supplements/dmso-uses-and-risks. 
  36. "Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons". PLOS ONE 8 (10): e77998. October 21, 2013. doi:10.1371/journal.pone.0077998. PMID 24205061. Bibcode2013PLoSO...877998L. 
  37. "Safety Data Sheet: Dimethyl Sulfoxide (DMSO)". Gaylord Chemical Company, L.L.C.. 21 July 2016. https://www.gaylordchemical.com/wp-content/uploads/2017/05/Dimethyl-Sulfoxide-DMSO-OSHA-WHMIS-GHS-SDS-2016-07-21-002.pdf?x81144. 
  38. "Material Safety Data Sheet: Dimethyl Sulfoxide". 21 May 2013. http://www.sciencelab.com/msds.php?msdsId=9927347. 
  39. "Material Safety Data Sheet: Ethyl alcohol 200 Proof". 21 May 2013. http://www.sciencelab.com/msds.php?msdsId=9923955. 
  40. "DMSO". American Cancer Society. http://www.cancer.org/treatment/treatmentsandsideeffects/complementaryandalternativemedicine/pharmacologicalandbiologicaltreatment/dmso. 
  41. "Brisbane drug company convicted of counterfeiting". Commonwealth of Australia: Department of Health and Ageing. 23 April 2003. http://www.health.gov.au/internet/main/publishing.nsf/Content/health-mediarel-yr2003-tw-tw03009.htm. 
  42. "Final decisions amending, or not amending, the current Poisons Standard, November 2018, 2.2 Dimethyl Sulfoxide". Commonwealth of Australia, Department of Health and Aged Care: Thereputic Goods Administration. https://www.tga.gov.au/resources/publication/scheduling-decisions-final/final-decisions-amending-or-not-amending-current-poisons-standard-november-2018/22-dimethyl-sulfoxide-dmso. 
  43. Rubber Chemical Resistance Chart
  44. "Chemical hygiene plan". Cornell University. October 1999. http://people.ccmr.cornell.edu/~cober/complete.chemical.hygiene.plan.2000.pdf. 
  45. "DMSO may have caused death of woman, makers of 'Wonder' drug warn doctors". The Wall Street Journal (New York City). September 9, 1965. 
  46. 46.0 46.1 https://www.fda.gov/ForIndustry/ImportProgram/ImportAlerts/ucm162294.htm [|permanent dead link|dead link}}]
  47. "Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system". Neurobiology of Disease 34 (1): 1–10. April 2009. doi:10.1016/j.nbd.2008.11.006. PMID 19100327. 
  48. "Analysis of a Toxic Death" (in en). https://www.discovermagazine.com/health/analysis-of-a-toxic-death. 
  49. "The Toxic Lady". https://skeptoid.com/episodes/4291. 
  50. "What's the story on the "toxic lady"?" (in en). 1996-03-22. https://www.straightdope.com/21342164/what-s-the-story-on-the-toxic-lady. 
  51. "Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the North-East WPCP plant of Philadelphia". Environmental Science and Technology 40 (1): 202–207. January 2006. doi:10.1021/es051312a. PMID 16433352. Bibcode2006EnST...40..202G. 
  52. George Kvakovszky, et al., "Process for preparing low malodorous dimethyl sulfoxide", US patent application number 20090005601 (2009).
  53. Roth, Lutz; Weller, Ursula (August 2000) (in de). Gefährliche Chemische Reaktionen. Ecomed Sicherheit. Landsberg/Lech: Verlagsgruppe Hüthig Jehle Rehm. ISBN 3-609-73090-0.  CD-ROM: ISBN:3-609-48040-8

External links