Astronomy:Gliese 486
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Virgo |
Right ascension | 12h 47m 56.62457s[1] |
Declination | +09° 45′ 05.0357″[1] |
Apparent magnitude (V) | 11.395 |
Characteristics | |
Evolutionary stage | main sequence |
Spectral type | M3.5V[2] |
Astrometry | |
Radial velocity (Rv) | 19.20±0.17[1] km/s |
Proper motion (μ) | RA: −1008.267[1] mas/yr Dec.: −460.034[1] mas/yr |
Parallax (π) | 123.7756 ± 0.0329[1] mas |
Distance | 26.351 ± 0.007 ly (8.079 ± 0.002 pc) |
Details[3] | |
Mass | 0.323±0.015 M☉ |
Radius | 0.328±0.011 R☉ |
Luminosity | 0.01210±0.00023 L☉ |
Temperature | 3340±54 K |
Metallicity [Fe/H] | −0.15±0.13[4] dex |
Rotation | 49.9±5.5 d[4] |
Rotational velocity (v sin i) | <2[5] km/s |
Age | 1-8[4] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Gliese 486, also known as Wolf 437 and formally named Gar, is a red dwarf star 26.4 light-years (8.1 parsecs) away in the constellation Virgo. It hosts one known exoplanet.[3]
Nomenclature
The designation Gliese 486 comes from the Gliese Catalogue of Nearby Stars. This was the 486th star listed in the first edition of the catalogue.
In August 2022, this planetary system was included among 20 systems to be named by the third NameExoWorlds project.[7] The approved names, proposed by a team from Spain , were announced in June 2023. Gliese 486 is named Gar and its planet is named Su, after the Basque words for "flame" and "fire".[8]
Properties
Gliese 486 has a surface temperature of 3340±54 K. Gliese 486 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.07±0.16. It was suspected to be a flare star,[9] although measurements available in 2019 did not reveal any flares.[10] The chemical makeup of the star is unremarkable and consistent with solar abundances or being slightly metal-poor.[4]
The star has an unremarkable magnetic field in the chromosphere of about 1.6 kilogauss.[5] It is rotating very slowly and is likely to be very old, belonging kinematically to the old thin disk of the Milky Way.[11]
Multiplicity surveys did not detect any stellar companions to Gliese 486 as of 2020.[12]
Planetary system
In 2021, one planet, named Gliese 486 b (ja), was discovered on a tight, circular orbit.[3] It represents a rare class of rocky exoplanet suitable for spectroscopic characterization in the near future[13] by the James Webb Space Telescope.[14] As of 2022, no hydrogen or steam dominated atmosphere was detected, although a secondary planetary atmosphere with a higher molecular weight remains a possibility.[15] Observations by JWST announced in 2023 detected signs of water vapor, but it is unclear if this is from the planet's atmosphere or from its host star.[16][17]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b / Su | 2.82+0.11−0.12 M⊕ | 0.01734+0.00026−0.00027 | 1.467119+0.000031−0.000030 | <0.05 | 88.4+1.1−1.4° | 1.305+0.063−0.067 R⊕ |
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ Bozhinova, I.; Helling, Ch.; Scholz, A. (2014), "Planetary host stars: Evaluating uncertainties in cool model atmospheres", Monthly Notices of the Royal Astronomical Society 450: 160–182, doi:10.1093/mnras/stv613, Bibcode: 2015MNRAS.450..160B
- ↑ 3.0 3.1 3.2 3.3 Trifonov, T. et al. (2021), "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation", Science 371 (6533): 1038–1041, doi:10.1126/science.abd7645, PMID 33674491, Bibcode: 2021Sci...371.1038T
- ↑ 4.0 4.1 4.2 4.3 Caballero, J. A. et al. (2022), "A detailed analysis of the Gl 486 planetary system", Astronomy & Astrophysics 665: A120, doi:10.1051/0004-6361/202243548, Bibcode: 2022A&A...665A.120C
- ↑ 5.0 5.1 Moutou, Claire; Hébrard, Élodie M.; Morin, Julien; Malo, Lison; Fouqué, Pascal; Torres-Rivas, Andoni; Martioli, Eder; Delfosse, Xavier et al. (2017), "SPIRou input catalogue: Activity, rotation and magnetic field of cool dwarfs", Monthly Notices of the Royal Astronomical Society 472 (4): 4563–4586, doi:10.1093/mnras/stx2306, Bibcode: 2017MNRAS.472.4563M
- ↑ "Wolf 437". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Wolf+437.
- ↑ "List of ExoWorlds 2022". IAU. 8 August 2022. https://www.nameexoworlds.iau.org/2022exoworlds.
- ↑ "2022 Approved Names". IAU. https://www.nameexoworlds.iau.org/2022approved-names.
- ↑ O'Donoghue, D.; Koen, C.; Kilkenny, D.; Stobie, R. S.; Koester, D.; Bessell, M. S.; Hambly, N.; MacGillivray, H. (2003), "The DA+d Me eclipsing binary EC13471-1258: its cup runneth over ... Just", Monthly Notices of the Royal Astronomical Society 345 (2): 506–528, doi:10.1046/j.1365-8711.2003.06973.x, Bibcode: 2003MNRAS.345..506O
- ↑ Vida, Krisztián; Leitzinger, Martin; Kriskovics, Levente; Seli, Bálint; Odert, Petra; Kovács, Orsolya Eszter; Korhonen, Heidi; Van Driel-Gesztelyi, Lidia (2019), "The quest for stellar coronal mass ejections in late-type stars", Astronomy & Astrophysics 623: A49, doi:10.1051/0004-6361/201834264
- ↑ Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; West, Andrew A.; Zhang, Jiahao (2010), "Rotation and Magnetic Activity in a Sample of M-Dwarfs", The Astronomical Journal 139 (2): 504, doi:10.1088/0004-6256/139/2/504, Bibcode: 2010AJ....139..504B
- ↑ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca et al. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal 159 (4): 139, doi:10.3847/1538-3881/ab6ef1, Bibcode: 2020AJ....159..139L
- ↑ Hot Super-Earth Discovered 26 Light-Years Away
- ↑ Newfound exoplanet could be 'Rosetta Stone' for studies of alien atmospheres
- ↑ Ridden-Harper, Andrew; Nugroho, Stevanus; Flagg, Laura; Jayawardhana, Ray; Turner, Jake D.; Ernst de Mooij; MacDonald, Ryan; Deibert, Emily et al. (2023), "High-resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b", The Astronomical Journal 165 (4): 170, doi:10.3847/1538-3881/acbd39, Bibcode: 2023AJ....165..170R
- ↑ Moran, Sarah E. et al. (May 2023). "High Tide or Rip-Tide on the Cosmic Shoreline? A Water-Rich Atmosphere or Stellar Contamination for the Warm Super-Earth GJ 486b from JWST Observations". The Astrophysical Journal Letters 948 (1): L11. doi:10.3847/2041-8213/accb9c. Bibcode: 2023ApJ...948L..11M.
- ↑ "Webb Finds Water Vapor, But From a Rocky Planet or Its Star?". STScI. 1 May 2023. https://webbtelescope.org/contents/news-releases/2023/news-2023-120.
Coordinates: 12h 47m 56.6249s, +09° 45′ 05.0319″
Original source: https://en.wikipedia.org/wiki/Gliese 486.
Read more |