Astronomy:Rogue planet

From HandWiki
Short description: Planetary objects without a planetary system

File:Artist's impression of the free-floating planet CFBDSIR J214947.2-040308.9.ogv

A rogue planet (also termed a free-floating planet (FFP), interstellar, nomad, orphan, sunless, starless, unbound or wandering planet) is an interstellar object of planetary-mass, therefore smaller than fusors (stars and brown dwarfs) and without a host planetary system. Such objects have been ejected from the planetary system in which they formed or have never been gravitationally bound to any star or brown dwarf.[1][2][3] The Milky Way alone may have billions to trillions of rogue planets, a range the upcoming Nancy Grace Roman Space Telescope will likely be able to narrow down.[4][5]

Some planetary-mass objects may have formed in a similar way to stars, and the International Astronomical Union has proposed that such objects be called sub-brown dwarfs.[6] A possible example is Cha 110913-773444, which may have been ejected and become a rogue planet, or formed on its own to become a sub-brown dwarf.[7]

Astronomers have used the Herschel Space Observatory and the Very Large Telescope to observe a very young free-floating planetary-mass object, OTS 44, and demonstrate that the processes characterizing the canonical star-like mode of formation apply to isolated objects down to a few Jupiter masses. Herschel far-infrared observations have shown that OTS 44 is surrounded by a disk of at least 10 Earth masses and thus could eventually form a mini planetary system.[8] Spectroscopic observations of OTS 44 with the SINFONI spectrograph at the Very Large Telescope have revealed that the disk is actively accreting matter, similarly to the disks of young stars.[8] In December 2013, a candidate exomoon of a rogue planet (MOA-2011-BLG-262) was announced.[9]

In October 2020, OGLE-2016-BLG-1928, an Earth-mass rogue planet, was discovered in the Milky Way.[10][11][12]

Observation

Artist's conception of a Jupiter-size rogue planet.
115 potential rogue planets in the region between Upper Scorpius and Ophiuchus (2021)

Astrophysicist Takahiro Sumi of Osaka University in Japan and colleagues, who form the Microlensing Observations in Astrophysics and the Optical Gravitational Lensing Experiment collaborations, published their study of microlensing in 2011. They observed 50 million stars in the Milky Way by using the 1.8-metre (5 ft 11 in) MOA-II telescope at New Zealand's Mount John Observatory and the 1.3-metre (4 ft 3 in) University of Warsaw telescope at Chile's Las Campanas Observatory. They found 474 incidents of microlensing, ten of which were brief enough to be planets of around Jupiter's size with no associated star in the immediate vicinity. The researchers estimated from their observations that there are nearly two Jupiter-mass rogue planets for every star in the Milky Way.[13][14][15] One study suggested a much larger number, up to 100,000 times more rogue planets than stars in the Milky Way, though this study encompassed hypothetical objects much smaller than Jupiter.[16] A 2017 study by Przemek Mróz of Warsaw University Observatory and colleagues, with six times larger statistics than the 2011 study, indicates an upper limit on Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star in the Milky Way.[17]

Nearby rogue planet candidates include WISE 0855−0714 at a distance of 7.27±0.13 light-years.[18]

In September 2020, astronomers using microlensing techniques reported the detection, for the first time, of an Earth-mass rogue planet (named OGLE-2016-BLG-1928) unbounded to any star and free floating in the Milky Way galaxy.[19][20][21]

In December 2021, the largest ever group of rogue planets was discovered, numbering at least 70 and up to 170 depending on the assumed age. They are found in the OB association between Upper Scorpius and Ophiuchus with masses between 4 to 13 ||J}}}}}} and age around 3 to 10 million years, and were most likely formed by either gravitational collapse of gas clouds, or formation in a protoplanetary disk followed by ejection due to dynamical instabilities.[22][23][24][25]

Warmth

Artist's impression of a rogue planet by A. Stelter

Interstellar planets generate little heat and are not heated by a star.[26] However, in 1998, David J. Stevenson theorized that some planet-sized objects adrift in interstellar space might sustain a thick atmosphere that would not freeze out. He proposed that these atmospheres would be preserved by the pressure-induced far-infrared radiation opacity of a thick hydrogen-containing atmosphere.[27]

During planetary-system formation, several small protoplanetary bodies may be ejected from the system.[28] An ejected body would receive less of the stellar-generated ultraviolet light that can strip away the lighter elements of its atmosphere. Even an Earth-sized body would have enough gravity to prevent the escape of the hydrogen and helium in its atmosphere.[27] In an Earth-sized object the geothermal energy from residual core radioisotope decay could maintain a surface temperature above the melting point of water,[27] allowing liquid-water oceans to exist. These planets are likely to remain geologically active for long periods. If they have geodynamo-created protective magnetospheres and sea floor volcanism, hydrothermal vents could provide energy for life.[27] These bodies would be difficult to detect because of their weak thermal microwave radiation emissions, although reflected solar radiation and far-infrared thermal emissions may be detectable from an object that is less than 1000 astronomical units from Earth.[29] Around five percent of Earth-sized ejected planets with Moon-sized natural satellites would retain their satellites after ejection. A large satellite would be a source of significant geological tidal heating.[30]

List

The table below lists rogue planets, confirmed or suspected, that have been discovered. It is yet unknown whether these planets were ejected from orbiting a star or else formed on their own as sub-brown dwarfs. Whether exceptionally low-mass rogue planets (such as OGLE-2012-BLG-1323 and KMT-2019-BLG-2073) are even capable of being formed on their own is currently unknown.

Exoplanet Mass ([[Astronomy:Jupiter mass J}}}}}}]]) Age (Myr) Distance (ly) Status Discovery
OTS 44 11.5~ 0.5–3 554 Likely a low-mass brown dwarf[31] 1998
S Ori 52 2–8 1–5 1,150 Age and mass uncertain; may be a foreground brown dwarf 2000[32]
S Ori 70 3 2002
Cha 110913-773444 5–15 2~ 529 Candidate 2004[33]
UGPS J072227.51−054031.2 5–40 13 Mass uncertain 2010
M10-4450 2–3 325 Candidate 2010[34]
WISE 1828+2650 3–6 or 0.5–20[35] 2–4 or 0.1–10[35] 47 2011
CFBDSIR 2149−0403 4–7 110–130 117–143 Candidate 2012[36]
WISE 0535−7500 1.5 - 8 47 2012
MOA-2011-BLG-262 4~ Likely a red dwarf 2013
PSO J318.5−22 5.5–8 21–27 80 Confirmed 2013[37]
2MASS J2208+2921 11–13 21–27 115 Candidate; radial velocity needed 2014[38]
WISE J1741-4642 4–21 23–130 Candidate 2014[39]
WISE 0855−0714 3–10 >1,000 7.1 Age uncertain, but old due to solar vicinity object;[40] candidate even for an old age of 12 Gyrs (age of the universe is 13.7 Gyrs) 2014[41]
2MASS J12074836–3900043 11–13 7–13 200 Candidate; distance needed 2014[42]
SIMP J2154–1055 9–11 30–50 63 Age questioned[43] 2014[44]
SDSS J111010.01+011613.1 10–12 110–130 63 Confirmed 2015[45]
2MASS J21140802-2251358 7.09 ± 1.98 12-22 72.32 2015[46]
2MASS J11193254–1137466 AB 4–8 7–13 ~90 Candidate 2016[47]
WISEA 1147 5–13 7–13 ~100 Candidate 2016[48]
OGLE-2012-BLG-1323 0.007245–0.07245 Candidate; distance needed 2017[49][50][51]
OGLE-2017-BLG-0560 1.9–20 Candidate; distance needed 2017[49][50][51]
MOA-2015-BLG-337L 9.85 23,156 May be a binary brown dwarf instead 2018[52]
KMT-2019-BLG-2073 0.19 Candidate; distance needed 2020[53]
OGLE-2016-BLG-1928 0.001-0.006 30,000-180,000 Candidate 2020[54]
WISE J0830+2837 4-13 >1,000 31.3-42.7 Age uncertain, but old because of high velocity (high Vtan is indicative of an old stellar population), Candidate if younger than 10 Gyrs 2020[55]
OGLE-2019-BLG-0551 0.0242 Poorly characterized[56] 2020[56]
OGLE-2019-BLG-1058 6.836 ± 6.027 8000 ± 5000 Multiple solutions. 2021
2MASS J0718-6415 3 ± 1 16-28 30.5 Candidate member of the Beta Pictoris moving group. Extremely short rotation period of 1.08 hours, comparable to the brown dwarf 2MASS J0348-6022.[57][58] 2021

See also

  • Astronomy:Intergalactic star – Star not gravitationally bound to any galaxy
  • Tidally detached exomoon
  • Rogue comet – A comet not gravitationally bound to any star
  • Rogue extragalactic planets – Rogue planets that are outside the Milky Way galaxy
  • The Wandering Earth
  • Melancholia – 2011 science fiction drama arthouse film by Lars von Trier in which the title-giving rogue planet is set on a collision course with Earth

References

  1. Shostak, Seth (24 February 2005). "Orphan Planets: It's a Hard Knock Life". https://www.space.com/818-orphan-planets-hard-knock-life.html. 
  2. Lloyd, Robin (18 April 2001). "Free-Floating Planets – British Team Restakes Dubious Claim". http://www.space.com/scienceastronomy/astronomy/free_floaters_010403-1.html. 
  3. "Orphan 'planet' findings challenged by new model". NASA Astrobiology. 18 April 2001. http://astrobiology.arc.nasa.gov/news/expandnews.cfm?id%3D783. 
  4. Neil deGrasse Tyson in Cosmos: A Spacetime Odyssey as referred to by National Geographic
  5. "The research team found that the mission will provide a rogue planet count that is at least 10 times more precise than current estimates, which range from tens of billions to trillions in our galaxy." https://scitechdaily.com/our-solar-system-may-be-unusual-rogue-planets-unveiled-with-nasas-roman-space-telescope/
  6. Working Group on Extrasolar Planets – Definition of a "Planet" Position Statement on the Definition of a "Planet" (IAU)
  7. "Rogue planet find makes astronomers ponder theory"
  8. 8.0 8.1 Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics 558 (7): L7. doi:10.1051/0004-6361/201322432. Bibcode2013A&A...558L...7J. 
  9. Bennett, D.P. et al. (13 December 2013). "A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge". The Astrophysical Journal 785 (2): 155. doi:10.1088/0004-637X/785/2/155. Bibcode2014ApJ...785..155B. 
  10. Gough, Evan (1 October 2020). "A Rogue Earth-Mass Planet Has Been Discovered Freely Floating in the Milky Way Without a Star". Universe Today. https://www.universetoday.com/148097/a-rogue-earth-mass-planet-has-been-discovered-freely-floating-in-the-milky-way-without-a-star/. 
  11. Mroz, Przemek (29 September 2020). "A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event". The Astrophysical Journal 903 (1): L11. doi:10.3847/2041-8213/abbfad. Bibcode2020ApJ...903L..11M. 
  12. Redd, Nola Taylor (19 October 2020). "Rogue Rocky Planet Found Adrift in the Milky Way - The diminutive world and others like it could help astronomers probe the mysteries of planet formation". Scientific American. https://www.scientificamerican.com/article/rogue-rocky-planet-found-adrift-in-the-milky-way/. 
  13. Homeless' Planets May Be Common in Our Galaxy by Jon Cartwright, Science Now, 18 May 2011, Accessed 20 May 2011
  14. Planets that have no stars: New class of planets discovered, Physorg.com, 18 May 2011. Accessed May 2011.
  15. Sumi, T. (2011). "Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing". Nature 473 (7347): 349–352. doi:10.1038/nature10092. PMID 21593867. Bibcode2011Natur.473..349S. 
  16. "Researchers say galaxy may swarm with 'nomad planets'". Stanford University. 2012-02-23. http://news.stanford.edu/news/2012/february/slac-nomad-planets-022312.html. 
  17. P. Mroz (2017). "No large population of unbound or wide-orbit Jupiter-mass planets". Nature 548 (7666): 183–186. doi:10.1038/nature23276. PMID 28738410. Bibcode2017Natur.548..183M. 
  18. Luhman, Kevin L.; Esplin, Taran L. (September 2016). "The Spectral Energy Distribution of the Coldest Known Brown Dwarf". The Astronomical Journal 152 (2): 78. doi:10.3847/0004-6256/152/3/78. Bibcode2016AJ....152...78L. 
  19. Gough, Evan (1 October 2020). "A Rogue Earth-Mass Planet Has Been Discovered Freely Floating in the Milky Way Without a Star". Universe Today. https://www.universetoday.com/148097/a-rogue-earth-mass-planet-has-been-discovered-freely-floating-in-the-milky-way-without-a-star/. 
  20. Mróz, Przemek et al. (2020). "A Terrestrial-mass Rogue Planet Candidate Detected in the Shortest-timescale Microlensing Event". The Astrophysical Journal Letters 903 (1): L11. doi:10.3847/2041-8213/abbfad. Bibcode2020ApJ...903L..11M. 
  21. Redd, Nola Taylor (19 October 2020). "Rogue Rocky Planet Found Adrift in the Milky Way - The diminutive world and others like it could help astronomers probe the mysteries of planet formation". Scientific American. https://www.scientificamerican.com/article/rogue-rocky-planet-found-adrift-in-the-milky-way/. 
  22. Miret-Roig, Núria; Bouy, Hervé; Raymond, Sean N.; Tamura, Motohide; Bertin, Emmanuel; Barrado, David; Olivares, Javier; Galli, Phillip A. B. et al. (2021-12-22). "A rich population of free-floating planets in the Upper Scorpius young stellar association" (in en). Nature Astronomy 6: 89–97. doi:10.1038/s41550-021-01513-x. ISSN 2397-3366. Bibcode2021arXiv211211999M. https://www.nature.com/articles/s41550-021-01513-x.  See also Nature SharedIt article link; ESO article link
  23. "ESO telescopes help uncover largest group of rogue planets yet". European Southern Observatory. 22 December 2021. https://www.eso.org/public/news/eso2120/. 
  24. Raymond, Sean; Bouy, Núria Miret-Roig & Hervé (2021-12-22). "We Discovered a Rogues' Gallery of Monster-Sized Gas Giants". http://nautil.us/blog/we-discovered-a-rogues-gallery-of-monster_sized-gas-giants. 
  25. Shen, Zili (2021-12-30). "Wandering Planets" (in en-US). https://astrobites.org/2021/12/30/free-floating-planets/. 
  26. Raymond, Sean (9 April 2005). "Life in the dark". Aeon. https://aeon.co/essays/could-we-make-our-home-on-a-rogue-planet-without-a-sun. 
  27. 27.0 27.1 27.2 27.3 Stevenson, David J.; Stevens, C. F. (1999). "Life-sustaining planets in interstellar space?". Nature 400 (6739): 32. doi:10.1038/21811. PMID 10403246. Bibcode1999Natur.400...32S. 
  28. Lissauer, J. J. (1987). "Timescales for Planetary Accretion and the Structure of the Protoplanetary disk". Icarus 69 (2): 249–265. doi:10.1016/0019-1035(87)90104-7. Bibcode1987Icar...69..249L. 
  29. Abbot, Dorian S.; Switzer, Eric R. (2 June 2011). "The Steppenwolf: A proposal for a habitable planet in interstellar space". The Astrophysical Journal 735 (2): L27. doi:10.1088/2041-8205/735/2/L27. Bibcode2011ApJ...735L..27A. 
  30. Debes, John H.; Steinn Sigurðsson (20 October 2007). "The Survival Rate of Ejected Terrestrial Planets with Moons". The Astrophysical Journal Letters 668 (2): L167–L170. doi:10.1086/523103. Bibcode2007ApJ...668L.167D. 
  31. Luhman, Kevin L. (10 February 2005). "Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk". Astrophysical Journal Letters 620 (1): L51–L54. doi:10.1086/428613. Bibcode2005ApJ...620L..51L. 
  32. Zapatero Osorio, M. R. (6 October 2000). "Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster". Science 290 (5489): 103–7. doi:10.1126/science.290.5489.103. PMID 11021788. Bibcode2000Sci...290..103Z. 
  33. Luhman, Kevin L. (10 December 2005). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". Astrophysical Journal Letters 635 (1): L93–L96. doi:10.1086/498868. Bibcode2005ApJ...635L..93L. 
  34. Marsh, Kenneth A. (1 February 2010). "A Young Planetary-Mass Object in the ρ Oph Cloud Core". Astrophysical Journal Letters 709 (2): L158–L162. doi:10.1088/2041-8205/709/2/L158. Bibcode2010ApJ...709L.158M. 
  35. 35.0 35.1 Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Barman, Travis S.; Marsh, Kenneth A.; Cushing, Michael C.; Wright, E. L. (2013). "The Coldest Brown Dwarf (or Free-floating Planet)?: The Y Dwarf WISE 1828+2650". The Astrophysical Journal 764 (1): 101. doi:10.1088/0004-637X/764/1/101. Bibcode2013ApJ...764..101B. 
  36. Delorme, Philippe (25 September 2012). "CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus?". Astronomy & Astrophysics 548A: 26. doi:10.1051/0004-6361/201219984. Bibcode2012A&A...548A..26D. 
  37. Liu, Michael C. (10 November 2013). "The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planets". Astrophysical Journal Letters 777 (1): L20. doi:10.1088/2041-8205/777/2/L20. Bibcode2013ApJ...777L..20L. 
  38. Gagné, Jonathan (10 March 2014). "BANYAN. II. Very Low Mass and Substellar Candidate Members to Nearby, Young Kinematic Groups with Previously Known Signs of Youth". Astrophysical Journal 783 (2): 121. doi:10.1088/0004-637X/783/2/121. Bibcode2014ApJ...783..121G. 
  39. Schneider, Adam C. (9 January 2014). "Discovery of the Young L Dwarf WISE J174102.78-464225.5". Astronomical Journal 147 (2): 34. doi:10.1088/0004-6256/147/2/34. Bibcode2014AJ....147...34S. 
  40. Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martín, Eduardo L.; Ivanov, V. D.; Bayo, A.; Boffin, H. M. J.; Muzic, K. et al. (2016-08-01). "Near-infrared photometry of WISE J085510.74-071442.5". Astronomy and Astrophysics 592: A80. doi:10.1051/0004-6361/201628662. ISSN 0004-6361. Bibcode2016A&A...592A..80Z. 
  41. Luhman, Kevin L. (10 May 2014). "Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun". Astrophysical Journal Letters 786 (2): L18. doi:10.1088/2041-8205/786/2/L18. Bibcode2014ApJ...786L..18L. 
  42. Gagné, Jonathan (10 April 2014). "The Coolest Isolated Brown Dwarf Candidate Member of TWA". Astrophysical Journal Letters 785 (1): L14. doi:10.1088/2041-8205/785/1/L14. Bibcode2014ApJ...785L..14G. 
  43. Liu, Michael C. (9 December 2016). "The Hawaii Infrared Parallax Program. II. Young Ultracool Field Dwarfs". Astrophysical Journal 833 (1): 96. doi:10.3847/1538-4357/833/1/96. Bibcode2016ApJ...833...96L. 
  44. Gagné, Jonathan (1 September 2014). "SIMP J2154-1055: A New Low-gravity L4β Brown Dwarf Candidate Member of the Argus Association". Astrophysical Journal Letters 792 (1): L17. doi:10.1088/2041-8205/792/1/L17. Bibcode2014ApJ...792L..17G. 
  45. Gagné, Jonathan (20 July 2015). "SDSS J111010.01+011613.1: A New Planetary-mass T Dwarf Member of the AB Doradus Moving Group". Astrophysical Journal Letters 808 (1): L20. doi:10.1088/2041-8205/808/1/L20. Bibcode2015ApJ...808L..20G. 
  46. Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015-09-01). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal 810 (2): 158. doi:10.1088/0004-637X/810/2/158. ISSN 0004-637X. Bibcode2015ApJ...810..158F. https://ui.adsabs.harvard.edu/abs/2015ApJ...810..158F. 
  47. Kellogg, Kendra (11 April 2016). "The Nearest Isolated Member of the TW Hydrae Association is a Giant Planet Analog". Astrophysical Journal Letters 821 (1): L15. doi:10.3847/2041-8205/821/1/L15. Bibcode2016ApJ...821L..15K. 
  48. Schneider, Adam C. (21 April 2016). "WISEA J114724.10-204021.3: A Free-floating Planetary Mass Member of the TW Hya Association". Astrophysical Journal Letters 822 (1): L1. doi:10.3847/2041-8205/822/1/L1. Bibcode2016ApJ...822L...1S. 
  49. 49.0 49.1 Becky Ferreira (9 November 2018). "Rare Sighting of Two Rogue Planets That Do Not Orbit Stars". Motherboard. https://motherboard.vice.com/en_us/article/ev3dkj/rare-sighting-of-two-rogue-planets-that-do-not-orbit-stars. 
  50. 50.0 50.1 Jake Parks (16 November 2018). "These Two New 'Rogue Planets' Wander the Cosmos Without Stars". Discover Magazine. http://blogs.discovermagazine.com/d-brief/2018/11/16/rogue-planets-discovered/#.XEeAI2l7mUk. 
  51. 51.0 51.1 Jake Parks (15 November 2018). "Two free-range planets found roaming the Milky Way in solitude". Astronomy Magazine. http://www.astronomy.com/news/2018/11/rogue-one-and-two. 
  52. "Exoplanet-catalog". https://exoplanets.nasa.gov/exoplanet-catalog/6413/moa-2015-blg-337l-b/. 
  53. Kim, Hyoun-Woo; Hwang, Kyu-Ha; Gould, Andrew; Yee, Jennifer C.; Ryu, Yoon-Hyun; Albrow, Michael D.; Chung, Sun-Ju; Han, Cheongho et al. (2021). "KMT-2019-BLG-2073: Fourth Free-floating Planet Candidate with θ e < 10 μas". The Astronomical Journal 162 (1): 15. doi:10.3847/1538-3881/abfc4a. Bibcode2021AJ....162...15K. 
  54. Mróz, Przemek; Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Sumi, Takahiro; Szymański, Michał K.; Soszyński, Igor; Pietrukowicz, Paweł et al. (2020), "A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event", The Astrophysical Journal 903 (1): L11, doi:10.3847/2041-8213/abbfad, Bibcode2020ApJ...903L..11M 
  55. Bardalez Gagliuffi, Daniella C.; Faherty, Jacqueline K.; Schneider, Adam C.; Meisner, Aaron; Caselden, Dan; Colin, Guillaume; Goodman, Sam; Kirkpatrick, J. Davy et al. (2020-06-01). "WISEA J083011.95+283716.0: A Missing Link Planetary-mass Object". The Astrophysical Journal 895 (2): 145. doi:10.3847/1538-4357/ab8d25. Bibcode2020ApJ...895..145B. 
  56. 56.0 56.1 Mróz, Przemek et al. (2020), "A Free-floating or Wide-orbit Planet in the Microlensing Event OGLE-2019-BLG-0551", The Astronomical Journal 159 (6): 262, doi:10.3847/1538-3881/ab8aeb, Bibcode2020AJ....159..262M 
  57. Vos, Johanna M.; Faherty, Jacqueline K.; Gagné, Jonathan; Marley, Mark; Metchev, Stanimir; Gizis, John; Rice, Emily L.; Cruz, Kelle (2022). "Let the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope". The Astrophysical Journal 924 (2): 68. doi:10.3847/1538-4357/ac4502. 
  58. "The Extrasolar Planet Encyclopaedia - 2MASS J0718-6415". http://exoplanet.eu/catalog/2mass_j0718-6415/. 

Bibliography

External links