Astronomy:List of nearest exoplanets

From HandWiki
Short description: none
Fomalhaut b (Dagon), 25 light-years away, with its parent star Fomalhaut blacked out, as pictured by Hubble in 2012.[1] In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[2]
Distribution of nearest known exoplanets as of March 2018

There are 4,160 known exoplanets, or planets outside the Solar System that orbit a star, as of January 1, 2020; only a small fraction of these are located in the vicinity of the Solar System.[3] Within 10 parsecs (32.6 light-years), there are 104 exoplanets listed as confirmed by the NASA Exoplanet Archive.[note 1][4] Among the over 500 known stars and brown dwarfs within 10 parsecs,[5][note 2] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][7] eight of which have planetary systems.

The first report of an exoplanet within this range was in 1998 for a planet orbiting around Gliese 876 (15.3 light-years (ly) away), and the latest as of 2023 are two around Gliese 367 (30.7 ly). The closest exoplanets are those found orbiting the star closest to the Solar System, which is Proxima Centauri 4.25 light-years away. The first confirmed exoplanet discovered in the Proxima Centauri system was Proxima Centauri b, in 2016. HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.

Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including planets around YZ Ceti, Gliese 367, and Proxima Centauri which may be less massive than Earth. Several confirmed exoplanets are hypothesized to be potentially habitable, with Proxima Centauri b and GJ 1002 b (15.8 ly) considered among the most likely candidates.[8] The International Astronomical Union has assigned proper names to some known extrasolar bodies, including nearby exoplanets, through the NameExoWorlds project. Planets named in the 2015 event include the planets around Epsilon Eridani (10.5 ly) and Fomalhaut,[note 4][11] while planets named in the 2022 event include those around Gliese 436, Gliese 486, and Gliese 367.[12]

Exoplanets within 10 parsecs

Key to colors
° Mercury, Earth and Jupiter (for comparison purposes)
# Confirmed multiplanetary systems
Exoplanets believed to be potentially habitable[8]
Confirmed exoplanets[4]
Host star system Companion exoplanet (in order from star) Notes and additional planetary observations
Name Distance
(ly)
Apparent
magnitude

(V)
Mass
(M)
Label
[note 5]
Mass
(M)[note 6]
Radius
(R)
Semi-major axis
(AU)
Orbital period
(days)
Eccentricity
Inclination
(°)
Discovery
method
Discovery year
Sun° 0.000016 -26 −26.7 rowspan = "3"|1 b0 Mercury

|| 0000.0550 0.055

|| 0.3829 || 0.387 || 0088 88.0

|| 0.205 || — || — || 1 —


d0 Earth

|| 0001.0000 1

|| 1 || 1 || 0365 365.3

|| 0.0167 || — || — || 0 —


f0 Jupiter

|| 0317.8000 317.8

|| 10.9 10.973

|| 5.20 || 4333 4,333

|| 0.0488 || — || — || 1 —


Proxima Centauri# 4.2465 1113 11.13 rowspan="2" | 0.123 d 0000.2600 ≥0.26 0.0289 5.122 0.04 RV 2022 [14][15] one disputed candidate (c)[16][17][18][19]
b 0001.0700 ≥1.07 0.0486 11.19 0.02 RV 2016
Lalande 21185# 8.304 0752 7.52 rowspan="2"| 0.46 b 0002.6900 ≥2.69 0.0788 12.94 0.06 RV 2019 1 candidate[20]
c 0013.6000 ≥13.6 2.94 2946 2,946 0.13 RV 2021
Epsilon Eridani 10.489 0373 3.73 0.781 b0 Ægir

|| 242 || — || 3.53 || 2688.60 2,689

0.26 166.5 RV 2000 1 inferred planet, 1 or possibly 2 inner debris discs, and an outer disc[21][22]
Lacaille 9352# 10.724 0734 7.34 rowspan="2"| 0.489 b 0004.2000 ≥4.2 0.068 9.262 0.03 RV 2019 1 candidate[23][24]
c 0007.6000 ≥7.6 0.120 21.79 0.03 RV 2019
Ross 128 11.007 1110 11.1 0.168 b 0001.4000 ≥1.40 style="background:#BCD4E6;" | — 0.0496 9.866 0.12 RV 2017 [25]
Groombridge 34 A# 11.619 0810 8.1 rowspan="2"|0.38 b 0003.0300 ≥3.03 0.072 11.44 0.09 ~54? RV 2014 [26][27]
c 0036.0000 ≥36 5.4 7600 7,600 0.27 ~54? RV 2018
Epsilon Indi A 11.867 483 4.83 0.762 b 941 11.08 15676.48 15,700 0.42 98.7 RV 2018 [28][22]
Tau Ceti# 11.912 0350 3.50 rowspan = "4" | 0.78 g g 0001.7500 ≥1.75 0.133 0020 20.0 0.06 ~35? RV 2017 4 candidates
[29][30][8][31][32][33]
h h 0001.8300 ≥1.8 0.243 0049 49.4 0.23 ~35? RV 2017
e e 0003.9300 ≥3.9 0.538 0163 163 0.18 ~35? RV 2017
f f 0003.9300 ≥3.9 1.33 0636 640 0.16 ~35? RV 2017
GJ 1061# 11.984 752 7.52 rowspan = "3" | 0.113 b 0001.3700 ≥1.37 0.021 3.204 <0.31 RV 2019 two solutions for d's orbit[34]
c 0001.7400 ≥1.74 0.035 6.689 <0.29 RV 2019
d 0001.6400 ≥1.64 0.054 13.03 <0.53 RV 2019
YZ Ceti# 12.122 1210 12.1 rowspan = "3" | 0.130 b 0000.7000 ≥0.70 0.0163 2.021 0.06 RV 2017 [35]
c 0001.1400 ≥1.14 0.0216 3.060 0.0 RV 2017
d 0001.0900 ≥1.09 0.0285 4.656 0.07 RV 2017
Luyten's Star# 12.348 1194 11.94 rowspan="4" | 0.29 c 0001.1800 ≥1.18 0.0365 4.723 0.10 RV 2017 [36][23]
b 0002.8900 ≥2.89 0.0911 18.65 0.17 RV 2017
d 0010.8000 ≥10.8 0.712 414 0.17 RV 2019
e 0009.3000 ≥9.3 0.849 542 0.03 RV 2019
Teegarden's Star# 12.497 1540 15.40 rowspan="2" | 0.08 b 0001.0500 ≥1.05 style="background:#BCD4E6;" | — 0.0252 4.910 0 RV 2019 [37]
c 0001.1100 ≥1.11 0.0443 11.41 0 RV 2019
Wolf 1061# 14.050 1010 10.1 rowspan="3" | 0.25 b 0001.9100 ≥1.91 0.0375 4.887 0.15 RV 2015 [36]
c 0003.4100 ≥3.41 0.0890 17.87 0.11 RV 2015
d 0007.7000 ≥7.7 0.470 217 0.55 RV 2015
TZ Arietis 14.578 1229.8 12.30 0.14 b 0067.0000 ≥67 0.88 771 0.46 RV 2019 2 refuted candidates[23][38][39]
Gliese 687# 14.839 0915 9.15 rowspan="2" |0.41 b 0017.2000 ≥17.2 0.163 38.14 0.17 RV 2014 [23][38]
c 0016.0000 ≥16.0 1.165 728 0.40 RV 2019
Gliese 674 14.849 0938 9.38 0.35 b 0011.0900 ≥11.1 0.039 4.694 0.20 RV 2007 [40]
Gliese 876# 15.238 1020 10.2 rowspan = "4"|0.33 d 6.68 0.0210 1.938 0.04 56.7 RV 2005 [41]
c 235 0.1309 30.10 0.26 56.7 RV 2000
b 749 0.2098 61.10 0.03 56.7 RV 1998
e 16 0.3355 123.6 0.05 56.7 RV 2010
GJ 1002# 15.806 1384 13.84 rowspan = "2"|0.12 b 0001.0800 ≥1.08 style="background:#BCD4E6;" | — 0.0457 10.35 RV 2022 [42]
c 0001.3600 ≥1.36 0.0738 21.2 RV 2022
Gliese 832 16.200 0867 8.67 0.45 b 315 3.7 3853 3,853 0.05 51 or 134 RV 2008 1 refuted candidate[43][44]
GJ 3323# 17.531 1220 12.2 rowspan = "2"| 0.164 b 0002.0200 ≥2.0 0.0328 0005.36 5.36 0.23 0.2 RV 2017 [45]
c 0002.3100 ≥2.3 0.126 0040.5 40.5 0.17 0.2 RV 2017
Gliese 251 18.215 0965 9.65 0.372 b 0004.0000 ≥4.0 0.0818 0014.238 14.2 0.10 0.10 RV 2020 [46]
Gliese 229 A# 18.791 0814 8.14 rowspan="2"|0.58 c 0007.3000 ≥7.3 style="background:#BCD4E6;" | — 0.339 0122.0 122 style="background:#BCD4E6;" | 0.19 RV 2020 Ab not confirmed until 2020.[47]
b 0008.5000 ≥8.5 0.898 0526.1 526 0.10 RV 2014
Gliese 752 A 19.292 0913 9.13 0.46 b 0013.6000 ≥13.6 0.338 0106.2 106 0.03 RV 2018 [48][23]
82 G. Eridani# 19.704 0426 4.26 rowspan = "4"|0.85 b 0002.7000 ≥2.7 0.121 0018 18.3 0 ~0 RV 2011 2 candidates
[49][50][51]
c 0002.4000 ≥2.4 0.204 0040 40.1 0 ~0 RV 2011
d 0004.8000 ≥4.8 0.350 0090.3 90 0 ~0 RV 2011
e 0004.7700 ≥4.8 0.509 0147 147 0.29 0.29 RV 2017
EQ Pegasi A 20.400 1038 10.38 0.436 b 0718 718 0.643 0284.39 284 0.35 69.2 Astrometry 2022 [52]
Gliese 581# 20.549 1055 10.5 rowspan = "3"|0.31 e 0001.7000 ≥1.7 0.0282 00032 3.15 0.0 ~45? RV 2009 3 refuted candidates and a disc
[53][54][55][56]
b 0015.8000 ≥16 0.0406 00054 5.37 0.0 ~45? RV 2005
c 0005.5000 ≥5.5 0.072 0013 12.9 0.0 ~45? RV 2007
Gliese 338 B 20.658 0700 7.0 0.64 b 0010.27000 ≥10.3 0.141 0024.45 24.5 0.11 RV 2020 [57]
Gliese 625 21.131 1020 10.2 0.30 b 0002.82000 ≥2.8 0.0784 0014.6 14.6 0.13 ~0.1 RV 2017 [58]
HD 219134# 21.336 0557 5.57 rowspan = "6"|0.78 b 0004.7400 4.7 1.60 0.0388 00031 3.09 0 ~0 85.05 RV 2015 [59][60][61]
c c 0004.3600 4.4 1.51 0.065 00068 6.77 0.0620 0.062 87.28 RV 2015
d d 0016.1700 ≥16 0.237 0047 46.9 0.138 0.138 ~87? RV 2015
f f 0007.3000 ≥7.3 0.146 0023 22.7 0.148 0.148 ~87? RV 2015
g g 0011.0000 ≥11 0.375 0094 94.2 0 0 ~87? RV 2015
h h (e) 0108.0000 ≥108 3.11 2247 2,247 0.06 0.06 ~87? RV 2015
LTT 1445 A# 22.387 1052.9 10.53 rowspan="2"| 0.26 c 0001.5400 1.54 1.15 0.0266 0003.12390 3.12 <0.22 87.43 Transit 2021 [62][63]
b 0002.8700 2.87 1.30 0.0381 0005.35877 5.36 <0.11 89.68 Transit 2019
Gliese 393 22.953 0865 8.65 0.41 b 0001.7100 ≥1.71 0.0540 0007.0268 7.03 0.00 RV 2019 [23][64]
Gliese 667 C# 23.623 1022 10.2 rowspan = "2"|0.33 b3 b 0005.4000 ≥5.4 0.049 00072 7.20 0.13 ~52? RV 2009 5 dubious candidates
[65][8][66][67][23]
c3 c

|| 0003.9000 ≥3.9

0.1251 0028 28.2 0.03 ~52? RV 2011
Gliese 514 24.878 0903 9.03 0.53 b 0005.2000 ≥5.2 0.421 140 0.45 RV 2022 [68]
Gliese 486 26.351 1139.5 11.395 0.32 Su 0002.8200 2.8 1.31 0.0173 0001.47 1.47 0 <0.05 88.4 Transit 2021 [69]
Gliese 686 26.613 0958 9.58 0.42 b 0007.1000 ≥7.1 0.097 0015.5 15.5 0.04 RV 2019 [70][23]
61 Virginis# 27.836 0474 4.74 rowspan = "2"|0.95 b 0005.1000 ≥5.1 0.0502 00042 4.22 0.12 ~0.1 ~77? RV 2009 a debris disc,[71] 1 disputed candidate[72]
c 0018.2000 ≥18 0.218 0038 38.0 0.14 ~77? RV 2009
CD Ceti 28.052 1400.1 14.001 0.161 b 0003.9500 ≥3.95 0.0185 0002.2907 2.29 0 RV 2020 [73]
Gliese 785# 28.739 0613 6.13 rowspan = "2"|0.78 b 0016.9000 ≥17 0.32 0074.7 75 0.13 RV 2010 [74]
c 0024.0000 ≥24 1.18 0526 530 0.32 ~0.3 RV 2011
Gliese 849# 28.750 1042 10.4 rowspan = "2"|0.49 b 0269.9000 ≥270 2.26 1905 1,910 0.05 RV 2006 [75][23]
c 0300.0000 ≥300 4.82 5520 5,520 0.087 RV 2006
Gliese 433# 29.605 0979 9.79 rowspan="3"|0.48 b 0006.0000 ≥6.0 0.062 00074 7.37 0.04 RV 2009 [76][23][47]
d 0005.2000 ≥5.2 0.178 00036.1 36.1 0.07 RV 2020
c 0032.4200 ≥32 4.82 05094 5,090 0.12 RV 2012
HD 102365 A 30.396 0489 4.89 0.85 b 0016.0000 ≥16 0.46 0122 122 0.34 RV 2010 [77]
Gliese 367 30.719 0998 9.98 0.45 Tahay 0000.5460 0.55 0.72 0.0071 0000.321962 0.32 0 80.75 Transit 2021 [78]
Gliese 357# 30.776 1090 10.9 rowspan="3"|0.34 b 0006.1000 6.1 1.17 0.035 3.93 0.02 88.92 Transit 2019 [79][23]
c 0003.6000 ≥3.6 0.061 9.13 0.04 ~89? RV 2019
d 0007.7000 ≥7.7 0.204 55.7 0.03 ~89? RV 2019
Gliese 176 30.937 1010 10.1 0.45 b 0008.0000 ≥8.0 0.066 0008.77 8.77 0.08 RV 2007 1 disputed candidate[80][81][23]
GJ 3512# 30.976 1311 13.11 rowspan="2"| 0.123 b 0147.0000 ≥147 0.338 204 0.44 RV 2019 [82]
c 0054.0000 ≥54 1.2 >1.2 1390 >1390 RV 2019
Wolf 1069 31.229 1399 13.99 0.167 b 0001.2600 ≥1.26 style="background:#BCD4E6;" | — 0.0672 15.6 RV 2023 [83]
AU Microscopii# 31.683 0863 8.63 rowspan="2"| 0.50 b 0017.0000 17 4.38 0.0645 0008.4629991 8.463 0.10 89.03 Transit 2020 [84][85]
c 0028.0000 <28 3.51 0.1101 18.858991 18.86 0 88.62 Transit 2020
Gliese 436 31.882 1067 10.67 0.41 Awohali 0021.3600 21.4 4.33 0.0280 2.64 0.15 85.8 RV 2004 [86][87]
Gliese 49 32.158 0890 8.9 0.57 b 0016.4000 ≥16.4 0.106 17.3 0.03 RV 2019 [88]
HD 260655# 32.608 0977 9.77 rowspan="2"| 0.439 b 0002.1400 2.14 1.240 0.0293 0002.76953 2.780 0.039 87.35 Transit 2022 [89]
c 0003.0900 3.09 1.533 0.0475 0005.70588 5.706 0.038 87.79 Transit 2022

Excluded objects

Unlike for bodies within the Solar System, there is no clearly established method for officially recognizing an exoplanet. According to the International Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[90] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases include Wolf 359 (7.9 ly, in 2019),[23] LHS 288 (15.8 ly, in 2007),[91] Gliese 682 (16.3 ly, in 2014),[47] 40 Eridani A (16.3 ly, in 2018),[92][72] and GJ 1151 (26.2 ly, in 2021).[93][94][95] There are also several instances where proposed exoplanets were later disproved by subsequent studies, including candidates around Alpha Centauri B (4.36 ly),[96] Barnard's Star (5.96 ly),[97][98] Kapteyn's Star (12.8 ly),[99] Van Maanen 2 (14.1 ly),[100] Groombridge 1618 (15.9 ly),[101] AD Leonis (16.2 ly),[102] VB 10 (19.3 ly),[103] and Fomalhaut (25.1 ly).[2]

In 2021, a candidate planet was detected around Vega, though it has yet to be confirmed.[104] Another candidate planet, Candidate 1, was directly imaged around Alpha Centauri A, though it may also be a clump of asteroids or an artifact of the discovery mechanism.[105]

The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion of deuterium. Some studies have calculated this to be somewhere around 13 times the mass of Jupiter, and therefore objects more massive than this are usually classified as brown dwarfs.[106] Some proposed candidate exoplanets have been shown to be massive enough to fall above the threshold, and thus are likely brown dwarfs, as is the case for: SCR 1845-6357 B (13.1 ly),[107] SDSS J1416+1348 B (30.3 ly),[108] and WISE 1217+1626 B (30 ly).[109]

Excluded from the current list are known examples of potential free-floating sub-brown dwarfs, or "rogue planets", which are bodies that are too small to undergo fusion yet they do not revolve around a star. Known such examples include: WISE 0855–0714 (7.4 ly),[110] UGPS 0722-05, (13.4 ly)[111] WISE 1541−2250 (18.6 ly),[112] and SIMP J01365663+0933473 (20.0 ly).[113]

See also


Notes

  1. Listed values are primarily taken from NASA Exoplanet Archive,[4] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
    "Exoplanet Catalog". Extrasolar Planets Encyclopaedia. Full table. https://exoplanet.eu/catalog/. 
    "Exoplanets Data Explorer". California Planet Survey. Click the "+" button to visualize additional parameters. http://exoplanets.org/table/. 
    "Open Exoplanet Catalogue". Click the "Show options" to visualize additional parameters. http://www.openexoplanetcatalogue.com/systems/. 
  2. For reference, the 100th closest known star system in April 2021 was EQ Pegasi (20.4 ly).[5]
  3. According to the Bortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has an apparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[6]
  4. The star Epsilon Eridani was named Ran (after Rán, the Norse goddess of the sea), and the planet Epsilon Eridani b was named AEgir (after Ægir, Rán's husband),[9] while the planet Fomalhaut b was named Dagon (after Dagon, an ancient Syrian “fish god”[10]).[11]
  5. Exoplanet naming convention assigns uncapitalized letters starting from b to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
  6. Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in the radial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on their orbital inclination (i). As such, most exoplanets only have an estimated minimum mass (Mreal*sin(i)), where their true masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[13]

References

  1. Harrington, J. D.; Villard, Ray (2013-08-01). "NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut". NASA. http://www.nasa.gov/mission_pages/hubble/science/rogue-fomalhaut.html. 
  2. 2.0 2.1 Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS 117 (18): 9712–9722. doi:10.1073/pnas.1912506117. PMID 32312810. Bibcode2020PNAS..117.9712G. 
  3. Schneider, Jean. "Interactive Extra-solar Planets Catalog". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/. 
  4. 4.0 4.1 4.2 "NASA Exoplanet Archive—Confirmed Planetary Systems". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars. 
  5. 5.0 5.1 Reylé, Céline; Jardine, Kevin; Fouqué, Pascal; Caballero, Jose A.; Smart, Richard L.; Sozzetti, Alessandro (30 April 2021). "The 10 parsec sample in the Gaia era". Astronomy & Astrophysics 650: A201. doi:10.1051/0004-6361/202140985. Bibcode2021A&A...650A.201R.  Data available at https://gruze.org/10pc/
  6. Bortle, John E. (2001). "Light Pollution And Astronomy: The Bortle Dark-Sky Scale". Sky & Telescope. http://www.skyandtelescope.com/resources/darksky/3304011.html. Retrieved 2014-05-20. 
  7. Powell, Richard (2006). "Stars within 50 light years". An Atlas of the Universe. http://www.atlasoftheuniverse.com/50lys.html. 
  8. 8.0 8.1 8.2 8.3 "The Habitable Exoplanets Catalog". University of Puerto Rico in Arecibo. 2015-09-01. http://phl.upr.edu/projects/habitable-exoplanets-catalog. 
  9. "epsilon Eridani". International Astronomical Union. http://nameexoworlds.iau.org/systems/105. 
  10. "Fomalhaut (alpha Piscis Austrini)". International Astronomical Union. http://nameexoworlds.iau.org/systems/103. 
  11. 11.0 11.1 "Final Results of NameExoWorlds Public Vote Released" (Press release). International Astronomical Union. 2015-12-15. Archived from the original on 2018-05-15. Retrieved 2018-03-17.
  12. "2022 Approved Names". IAU. https://www.nameexoworlds.iau.org/2022approved-names. 
  13. Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W. et al. (2008). "The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets". Publications of the Astronomical Society of the Pacific 120 (867): 531–554. doi:10.1086/588487. Bibcode2008PASP..120..531C. 
  14. Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature 536 (7617): 437–440. doi:10.1038/nature19106. PMID 27558064. Bibcode2016Natur.536..437A. https://www.nature.com/articles/nature19106. 
  15. Faria, J. P.; Suárez Mascareño, A. et al. (January 4, 2022). "A candidate short-period sub-Earth orbiting Proxima Centauri". Astronomy & Astrophysics (European Southern Observatory) 658: 17. doi:10.1051/0004-6361/202142337. Bibcode2022A&A...658A.115F. https://www.eso.org/public/archives/releases/sciencepapers/eso2202/eso2202a.pdf. 
  16. Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances 6 (3): eaax7467. doi:10.1126/sciadv.aax7467. PMID 31998838. Bibcode2020SciA....6.7467D. 
  17. Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics 635: L14. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. Bibcode2020A&A...635L..14K. 
  18. Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS 4 (6): 86. doi:10.3847/2515-5172/ab9ca9. Bibcode2020RNAAS...4...86B. 
  19. Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; Donati, Jean-Françcois; Moutou, Claire; Delfosse, Xavier et al. (2022). "Line-by-line Velocity Measurements: An Outlier-resistant Method for Precision Velocimetry". The Astronomical Journal 164 (3): 84. doi:10.3847/1538-3881/ac7ce6. Bibcode2022AJ....164...84A. 
  20. Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J.; Howard, Andrew W.; Weiss, Lauren M.; Petigura, Erik A. (2021), "Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate", The Astronomical Journal 163 (5): 218, doi:10.3847/1538-3881/ac5c47, Bibcode2022AJ....163..218H 
  21. Booth, Mark; Pearce, Tim D; Krivov, Alexander V; Wyatt, Mark C; Dent, William R F; Hales, Antonio S; Lestrade, Jean-François; Cruz-Sáenz de Miera, Fernando et al. (2023-03-30). "The clumpy structure of ϵ Eridani's debris disc revisited by ALMA". Monthly Notices of the Royal Astronomical Society (Oxford University Press (OUP)) 521 (4): 6180–6194. doi:10.1093/mnras/stad938. ISSN 0035-8711. Bibcode2023MNRAS.521.6180B. 
  22. 22.0 22.1 Feng, Fabo et al. (July 2023). "Revised orbits of the two nearest Jupiters". Monthly Notices of the Royal Astronomical Society 525 (1): 607–619. doi:10.1093/mnras/stad2297. Bibcode2023MNRAS.525..607F. 
  23. 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 23.12 Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  24. Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N. et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science 368 (6498): 1477–1481, doi:10.1126/science.aaz0795, PMID 32587019, Bibcode2020Sci...368.1477J 
  25. Bonfils, Xavier (2017). "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". Astronomy and Astrophysics 613: A25. doi:10.1051/0004-6361/201731973. Bibcode2018A&A...613A..25B. 
  26. Howard, Andrew W. et al. (October 2014). "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal 794 (1): 9. doi:10.1088/0004-637X/794/1/51. 51. Bibcode2014ApJ...794...51H. 
  27. Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L. et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics 617: A104. doi:10.1051/0004-6361/201732535. Bibcode2018A&A...617A.104P. 
  28. Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019). "Detection of the nearest Jupiter analog in radial velocity and astrometry data". Monthly Notices of the Royal Astronomical Society 490 (4): 5002–5016. doi:10.1093/mnras/stz2912. Bibcode2019MNRAS.490.5002F. 
  29. "tau Cet". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=tau+Cet. 
  30. "tau Ceti". Open Exoplanet Catalogue. http://www.openexoplanetcatalogue.com/system.html?id=tau%20Ceti%20b. 
  31. "tau Cet b". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_b--1234/. 
  32. "tau Cet c". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_c--1235/. 
  33. "tau Cet d". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_d--1236/. 
  34. Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S. et al. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061" (in en). Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/staa248. Bibcode2020MNRAS.493..536D. 
  35. Stock, S. et al. (2020). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics 636: A119. doi:10.1051/0004-6361/201936732. Bibcode2020A&A...636A.119S. 
  36. 36.0 36.1 Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics 602: A88. doi:10.1051/0004-6361/201630153. Bibcode2017A&A...602A..88A. https://www.aanda.org/articles/aa/full_html/2017/06/aa30153-16/aa30153-16.html. 
  37. Caballero, J. A. et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (in en). Astronomy & Astrophysics 627: A49. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. Bibcode2019A&A...627A..49Z. https://www.aanda.org/articles/aa/pdf/forth/aa35460-19.pdf. 
  38. 38.0 38.1 Feng, Fabo (October 2020). "Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs". The Astrophysical Journal Supplement Series 250 (2): 29. doi:10.3847/1538-4365/abb139. Bibcode2020ApJS..250...29F. 
  39. Quirrenbach, A.; Passegger, V. M.; Trifonov, T.; Amado, P. J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Aceituno, J. et al. (2022). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics 663: A48. doi:10.1051/0004-6361/202142915. Bibcode2022A&A...663A..48Q. 
  40. Bonfils, X. et al. (2007). "The HARPS search for southern extra-solar planets. X. A m sin i = 11 M🜨 planet around the nearby spotted M dwarf GJ 674". Astronomy and Astrophysics 474 (1): 293–299. doi:10.1051/0004-6361:20077068. Bibcode2007A&A...474..293B. http://www.aanda.org/articles/aa/full/2007/40/aa7068-07/aa7068-07.html. 
  41. Moutou, C. et al. (July 2023). "Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148". Astronomy & Astrophysics. 
  42. Suárez Mascareño, A. et al. (December 2022). "Two temperate Earth-mass planets orbiting the nearby star GJ 1002". Astronomy & Astrophysics 670: A5. doi:10.1051/0004-6361/202244991. Bibcode2023A&A...670A...5S. 
  43. Gorrini, P.; Astudillo-Defru, N.; Dreizler, S.; Damasso, M.; Díaz, R. F.; Bonfils, X.; Jeffers, S. V.; Barnes, J. R. et al. (2022). "Detailed stellar activity analysis and modelling of GJ 832". Astronomy & Astrophysics 664: A64. doi:10.1051/0004-6361/202243063. Bibcode2022A&A...664A..64G. 
  44. Philipot, F. et al. (August 2023). "Multi techniques approach to identify and/or constrain radial velocity sub-stellar companions". Astronomy & Astrophysics. 
  45. "GJ 3323". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+3323. 
  46. Stock, S. et al. (2020), "The CARMENES search for exoplanets around M dwarfs Three temperate-to-warm super-Earths", Astronomy & Astrophysics A112: 643, doi:10.1051/0004-6361/202038820, Bibcode2020A&A...643A.112S 
  47. 47.0 47.1 47.2 Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong et al. (8 January 2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series 246 (1): 11. doi:10.3847/1538-4365/ab5e7c. Bibcode2020ApJS..246...11F. 
  48. Kaminski, Adrian; Trifonov, Trifon; Caballero, José A.; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Amado, Pedro J.; Zechmeister, Mathias et al. (3 August 2018). "The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617". Astronomy & Astrophysics 618: A115. doi:10.1051/0004-6361/201833354. Bibcode2018A&A...618A.115K. 
  49. "HD 20794". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+20794. 
  50. "HD 20794 f". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/hd_20794_f--6565/. 
  51. "HD 20794 g". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/hd_20794_g--6566/. 
  52. Curiel, Salvador; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Sanchez-Bermudez, Joel (September 2022). "3D Orbital Architecture of a Dwarf Binary System and Its Planetary Companion". The Astronomical Journal 164 (3): 93. doi:10.3847/1538-3881/ac7c66. Bibcode2022AJ....164...93C. 
  53. "GJ 581". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+581. 
  54. "GJ 581 d". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/gj_581_d--398/. 
  55. "GJ 581 f". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/gj_581_f--746/. 
  56. "GJ 581 g". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/gj_581_g--745/. 
  57. González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F. et al. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)". Astronomy & Astrophysics A93: 637. doi:10.1051/0004-6361/201937050. Bibcode2020A&A...637A..93G. 
  58. "GJ 625". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+625. 
  59. Vogt, Steven S. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal 814 (1): 12. doi:10.1088/0004-637X/814/1/12. Bibcode2015ApJ...814...12V. 
  60. Johnson, Marshall C. (April 2016). "A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134". The Astrophysical Journal 821 (2): 74. doi:10.3847/0004-637X/821/2/74. Bibcode2016ApJ...821...74J. 
  61. Gillon, Michaël et al. (2017). "Two massive rocky planets transiting a K-dwarf 6.5 parsecs away". Nature Astronomy 1 (3): 0056. doi:10.1038/s41550-017-0056. Bibcode2017NatAs...1E..56G. 
  62. Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; Díaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A. et al. (24 June 2019). "Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs" (in en). The Astronomical Journal. doi:10.3847/1538-3881/ab364d. 
  63. Winters, Jennifer G.; Cloutier, Ryan; Medina, Amber A.; Irwin, Jonathan M.; Charbonneau, David; Astudillo-Defru, Nicola; Bonfils, Xavier; Howard, Andrew W. et al. (2022). "A Second Planet Transiting LTT 1445A and a Determination of the Masses of Both Worlds". The Astronomical Journal 163 (4): 168. doi:10.3847/1538-3881/ac50a9. Bibcode2022AJ....163..168W. 
  64. Amado, Pedro J.; Bauer, Florian F.; Rodríguez López, Cristina; Rodríguez, Eloy; Cardona Guillén, C.; Perger, M.; Caballero, José A.; López-González, Maria J. et al. (2021-05-28). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics 650: A188. doi:10.1051/0004-6361/202140633. 
  65. "GJ 667 C". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+667+C. 
  66. "GJ 667 C d". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/gj_667_c_d--1090/. 
  67. "GJ 667 C h". Extrasolar Planets Encyclopaedia. 2016-02-23. https://exoplanet.eu/catalog/gj_667_c_h--1296/. 
  68. Damasso, M.; Perger, M.; Almenara, J. M.; Nardiello, D.; Pérez-Torres, M.; Sozzetti, A.; Hara, N. C.; Quirrenbach, A. et al. (13 April 2022). "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514". Astronomy & Astrophysics 666: A187. doi:10.1051/0004-6361/202243522. 
  69. Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, Ansgar; Bean, J. L.; Luque, R. et al. (5 March 2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation". Science 371 (6533): 1038–1041. doi:10.1126/science.abd7645. PMID 33674491. Bibcode2021Sci...371.1038T. 
  70. Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E. et al. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686". Astronomy & Astrophysics A193: 622. doi:10.1051/0004-6361/201834868. 
  71. "61 Vir". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=61+Vir. 
  72. 72.0 72.1 Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C. et al. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series 255 (1): 8. doi:10.3847/1538-4365/abe23c. Bibcode2021ApJS..255....8R. 
  73. Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D. et al. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b". Astronomy and Astrophysics 640: A50. doi:10.1051/0004-6361/202038031. Bibcode2020A&A...640A..50B. 
  74. "HD 192310". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+192310. 
  75. "GJ 849". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+849. 
  76. "GJ 433". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+433. 
  77. "HD 102365". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+102365. 
  78. Lam, Kristine W. F.; Csizmadia, Szilárd; Astudillo-Defru, Nicola; Bonfils, Xavier; Gandolfi, Davide; Padovan, Sebastiano; Esposito, Massimiliano; Hellier, Coel et al. (3 December 2021). "GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star". Science 374 (6572): 1271–1275. doi:10.1126/science.aay3253. PMID 34855492. Bibcode2021Sci...374.1271L. https://eprints.keele.ac.uk/10383/1/2112.01309.pdf. 
  79. Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P. et al. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation" (in en). Astronomy & Astrophysics A39: 628. doi:10.1051/0004-6361/201935801. Bibcode2019A&A...628A..39L. 
  80. "HD 285968". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+285968. 
  81. "GJ 176 c". Extrasolar Planets Encyclopaedia. 2010-12-17. https://exoplanet.eu/catalog/gj_176_c--786/. 
  82. Morales, J. C. et al. (2019). "A giant exoplanet orbiting a very-low-mass star challenges planet formation models". Science 365 (6460): 1441–1445. doi:10.1126/science.aax3198. ISSN 0036-8075. PMID 31604272. Bibcode2019Sci...365.1441M. 
  83. Kossakowski, D. et al. (January 2023). "The CARMENES search for exoplanets around M dwarfs, Wolf 1069 b: Earth-mass planet in the habitable zone of a nearby, very low-mass star". Astronomy & Astrophysics 670. doi:10.1051/0004-6361/202245322. Bibcode2023A&A...670A..84K. 
  84. Plavchan, Peter et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature 582 (7813): 497–500. doi:10.1038/s41586-020-2400-z. PMID 32581383. Bibcode2020Natur.582..497P. 
  85. Martioli, E. (2021). "New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance". Astronomy & Astrophysics A177: 649. doi:10.1051/0004-6361/202040235. Bibcode2021A&A...649A.177M. 
  86. Gillon, M. (2007). "Detection of transits of the nearby hot Neptune GJ 436 b". Astronomy and Astrophysics 472 (2): L13–L16. doi:10.1051/0004-6361:20077799. Bibcode2007A&A...472L..13G. 
  87. Lanotte, A. A. et al. (2014). "A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b". Astronomy and Astrophysics 572: A73. doi:10.1051/0004-6361/201424373. Bibcode2014A&A...572A..73L. 
  88. Perger, M. et al. (April 2019). "Gliese 49: Activity evolution and detection of a super-Earth". Astronomy & Astrophysics 624: 19. doi:10.1051/0004-6361/201935192. A123. ISSN 0004-6361. Bibcode2019A&A...624A.123P. 
  89. Luque, R. et al. (2022). "The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc". Astronomy & Astrophysics 664: A199. doi:10.1051/0004-6361/202243834. Bibcode2022A&A...664A.199L. 
  90. Lee, Rhodi (2015-09-18). "Want To Name An Exoplanet? Here's Your Chance". Tech Times. http://www.techtimes.com/articles/77119/20150818/want-to-name-an-exoplanet-heres-your-chance.htm. 
  91. Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C (2009). "A Search for Astrometric Companions to Stars in the Southern Hemisphere". Publications of the Astronomical Society of the Pacific 121 (878): 365. doi:10.1086/599044. Bibcode2009PASP..121..365B. 
  92. Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik et al. (October 2018). "The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society 480 (2): 2411–2422. doi:10.1093/mnras/sty1933. Bibcode2018MNRAS.480.2411M. 
  93. Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P. et al. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy 4 (6): 577–583. doi:10.1038/s41550-020-1011-9. Bibcode2020NatAs...4..577V. 
  94. Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D. et al. (3 February 2021). "The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star". The Astrophysical Journal Letters 919 (1): L9. doi:10.3847/2041-8213/abe2b2. Bibcode2021ApJ...919L...9M. 
  95. Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A. et al. (2021), "The CARMENES search for exoplanets around M dwarfs, No evidence for a super-Earth in a 2-day orbit around GJ 1151", Astronomy & Astrophysics 649: L12, doi:10.1051/0004-6361/202140786, Bibcode2021A&A...649L..12P 
  96. Rajpaul, Vinesh (19 October 2015). "Ghost in the time series: no planet for Alpha Cen B". Monthly Notices of the Royal Astronomical Society: Letters 456 (1): L6–L10. doi:10.1093/mnrasl/slv164. Bibcode2016MNRAS.456L...6R. 
  97. Ribas, I.; Tuomi, M.; Reiners, Ansgar; Butler, R. P. et al. (2018-11-14). "A candidate super-Earth planet orbiting near the snow line of Barnard's star". Nature (Holtzbrinck Publishing Group) 563 (7731): 365–368. doi:10.1038/s41586-018-0677-y. ISSN 0028-0836. OCLC 716177853. PMID 30429552. Bibcode2018Natur.563..365R. https://www.eso.org/public/archives/releases/sciencepapers/eso1837/eso1837a.pdf. 
  98. Lubin, Jack; Robertson, Paul; Stefansson, Gudmundur et al. (15 July 2021). "Stellar Activity Manifesting at a One-year Alias Explains Barnard b as a False Positive". The Astronomical Journal (American Astronomical Society) 162 (2): 61. doi:10.3847/1538-3881/ac0057. ISSN 0004-6256. Bibcode2021AJ....162...61L. 
  99. Bortle, Anna et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal 161 (5): 230. doi:10.3847/1538-3881/abec89. Bibcode2021AJ....161..230B. 
  100. Farihi, J.; Becklin, E. E.; Macintosh, B. A. (June 2004). "Mid-Infrared Observations of van Maanen 2: No Substellar Companion". Astrophysical Journal Letters 608 (2): L109–L112. doi:10.1086/422502. Bibcode2004ApJ...608L.109F. 
  101. Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh et al. (May 2010). "Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations". The Astrophysical Journal 714 (2): 1551–1569. doi:10.1088/0004-637X/714/2/1551. Bibcode2010ApJ...714.1551H. 
  102. Carleo, I. (June 2020). "The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b". Astronomy & Astrophysics 638: A5. doi:10.1051/0004-6361/201937369. Bibcode2020A&A...638A...5C. 
  103. "VB 10 b". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/vb_10_b--550/. 
  104. Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth et al. (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal 161 (4): 157. doi:10.3847/1538-3881/abdec8. Bibcode2021AJ....161..157H. 
  105. Wagner, K.; Boehle, A.; Pathak, P.; Kasper, M.; Arsenault, R.; Jakob, G.; Käufl, U.; Leveratto, S. et al. (2021-02-10). "Imaging low-mass planets within the habitable zone of α Centauri" (in en). Nature Communications 12 (1): 922. doi:10.1038/s41467-021-21176-6. ISSN 2041-1723. PMID 33568657. Bibcode2021NatCo..12..922W. 
  106. Boss, Alan P.; Butler, R. Paul; Hubbard, William B. et al. (2007). "Working Group on Extrasolar Planets". Proceedings of the International Astronomical Union 1 (T26A): 183. doi:10.1017/S1743921306004509. Bibcode2007IAUTA..26..183B. 
  107. "SCR 1845 b". Extrasolar Planets Encyclopaedia. 2012-04-13. https://exoplanet.eu/catalog/scr_1845_b--321/. 
  108. "SDSS 141624 b". Extrasolar Planets Encyclopaedia. 2010-01-18. http://exoplanet.eu/catalog/sdss_141624_b/. 
  109. "WISE 1217+16A b". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/wise_1217_16_a_b--1465/. 
  110. Clavin, Whitney; Harrington, J. D. (2014-04-25). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA. http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425/. 
  111. Lucas, P. W.; Tinney, C. G.; Burningham, B. et al. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society 408 (1): L56–L60. doi:10.1111/j.1745-3933.2010.00927.x. Bibcode2010MNRAS.408L..56L. 
  112. Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R. et al. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal 743 (1): 50. doi:10.1088/0004-637X/743/1/50. Bibcode2011ApJ...743...50C. 
  113. "Astronomers discover a nearby free-range planet with incredible magne". http://www.astronomy.com/news/2018/08/free-range-planet. 

External links

Template:Featured list is only for Wikipedia:Featured lists.