Astronomy:List of nearest exoplanets

From HandWiki
Short description: none
Fomalhaut b (Dagon), 25 light-years away, with its parent star Fomalhaut blacked out, as pictured by Hubble in 2012.[1] In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[2]
Distribution of nearest exoplanets

There are 4,160 known exoplanets, or planets outside the Solar System that orbit a star, as of January 1, 2020; only a small fraction of these are located in the vicinity of the Solar System.[3] Within 10 parsecs (32.6 light-years), there are 97 exoplanets listed as confirmed by the NASA Exoplanet Archive.[note 1][4] Among the over 400 known stars within 10 parsecs,[note 2][6] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][8] nine of which have planetary systems.

The first report of an exoplanet within this range was in 1998 for a planet orbiting around Gliese 876 (15.3 light-years (ly) away), and the latest as of 2021 is one around Gliese 367 (31 ly). The closest exoplanet found is Proxima Centauri b, which was confirmed in 2016 to orbit Proxima Centauri, the closest star to the Solar System (4.25 ly). HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.

Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including two planets (around YZ Ceti, 12 ly) which may be less massive than Earth. Several confirmed exoplanets are hypothesized to be potentially habitable, with Proxima Centauri b and Gliese 667 Cc (23.6 ly) considered among the most likely candidates.[9] The International Astronomical Union took a public survey known as NameExoWorlds in 2015 to assign proper names to some known extrasolar bodies, including the planets around Epsilon Eridani (10.5 ly) and Fomalhaut.[note 4][12]

Exoplanets within 10 parsecs

Key to colors
° Mercury, Earth and Jupiter (for comparison purposes)
# Confirmed multiplanetary systems
Exoplanets believed to be potentially habitable[9]
Confirmed exoplanets[4]
Host star system Companion exoplanet (in order from star) Notes and additional planetary observations
Name Distance
(ly)
Apparent
magnitude

(V)
Mass
(M)
Label
[note 5]
Mass
(M)[note 6]
Radius
(R)
Semi-major axis
(AU)
Orbital period
(days)
Eccentricity
Inclination
(°)
Discovery
method
Discovery year
Sun° 0.000016 -26 −26.7 rowspan = "3"|1 b0 Mercury

|| 0000.055 0.055

|| 0.3829 || 0.387 || 0088 88.0

|| 0.205 || — || — || 1 —


d0 Earth

|| 0001.0 1

|| 1 || 1 || 0365 365.3

|| 0.0167 || — || — || 0 —


f0 Jupiter

|| 0317.8 317.8

|| 10.9 10.973

|| 5.20 || 4333 4,333

|| 0.0488 || — || — || 1 —


Proxima Centauri# 4.2465 1113 11.13 rowspan="3"|0.123 b 0091.173 >1.2 style="background:#BCD4E6;" | — 0.0486 0011.18418 11.2 style="background:#BCD4E6;" |0.109 ~133? RV 2016 [14][9][15][16][17]
c 0007 7 1.489 1928 0.04 133 RV 2020
d 0009.26 >0.26 0.81 0.02885 5.122 0.04 RV 2020
Wolf 359# 7.856 1354 13.54 rowspan="2"| 0.09 c 0093.8 >3.8 0.018 0002.687 2.69 0.15 RV 2019 [18]
b 0943.9 >43.9 1.845 2938 2,940 0.04 RV 2019
Lalande 21185 8.304 0752 7.52 rowspan="2"| 0.46 b 0092.69 >2.7 0.0789 0012.946 12.9 0.12 RV 2017 [18][19][20][21]
c 0924.7 >24.7 3.10 3190 3190 0.14 RV 2021
Epsilon Eridani 10.489 0373 3.73 0.781 b0 Ægir

|| 9493 248

3.48 2692 2,692 0.07 89 RV 2000 1 inferred planet, 1 or possibly 2 inner debris discs, and an outer disc[22][23][24]
Lacaille 9352# 10.724 0734 7.34 rowspan="2"| 0.489 b 0094.2 >4.2 0.068 0009.262 9.26 0.03 RV 2019 1 candidate[18][25]
c 0097.6 >7.6 0.120 0021.789 21.8 0.03 RV 2019
Ross 128 11.007 1110 11.1 0.168 b 0091.4 >1.4 style="background:#BCD4E6;" | — 0.0496 0009.87 9.87 style="background:#BCD4E6;" |0.12 RV 2017 [26]
Struve 2398 B# 11.491 0970 9.7 rowspan="2"| 0.248 b 0915.7 >15.7 0.261 0091.29 91.3 0.06 RV 2019 [18]
c 0913.1 >13.1 0.428 0192.4 192 0.03 RV 2019
Groombridge 34 A# 11.619 0810 8.1 rowspan="2"|0.38 b 0093.03 >3.03 0.072 0011.4407 11.4 0.094 ~61? RV 2014 [27][28][29]
c 0936 >36 5.4 7,600 0.27 ~61? RV 2018
Epsilon Indi A 11.867 483 4.83 0.762 b 1032.85 1030 11.55 16509.5 16,500 0.26 64.25 RV 2018 [30]

[31][32]

Tau Ceti# 11.912 0350 3.50 rowspan = "4" | 0.78 g g 0091.75 >1.7 0.133 0020 20.0 0.06 RV 2017 4 candidates
[33][34][9][35][36][37]
h h 0091.83 >1.8 0.243 0049 49.4 0.23 RV 2017
e e 0093.93 >3.9 0.538 0163 163 0.18 RV 2017
f f

|| 0093.93 >3.9

1.33 0636 640 0.16 RV 2017
Gliese 1061# 11.984 752 7.52 rowspan = "3" | 0.113 b 0091.4 >1.4 0.021 0003.204 3.20 <0.31 RV 2019 two solutions for d's orbit[38]
c 0091.7 >1.7 0.035 0006.689 6.69 <0.29 RV 2019
d 0091.6 >1.6 0.052 0012.434 12.4 <0.54 RV 2019
YZ Ceti# 12.122 1210 12.1 rowspan = "3" | 0.130 b 0009.75 >0.75 0.0156 000197 1.97 0.0 RV 2017 1 candidate
[39][40][18]
c 0091.2 >1.2 0.0209 0003.06 3.06 0.04 RV 2017
d 0091.1 >1.1 0.0276 0004.66 4.66 0.03 RV 2017
Luyten's Star# 12.348 1194 11.94 rowspan="4" | 0.29 c 0091.18 >1.2 0.0365 000472 4.72 0.12 RV 2017 [9][41][18]
b 0092.2 >2.2 0.090 0018.6 18.6 0.03 RV 2017
d 0910.8 >10.8 0.712 0413.9 414 0.17 RV 2019
e 0099.3 >9.3 0.849 0542 542 0.03 RV 2019
Teegarden's Star# 12.497 1540 15.40 rowspan="2" | 0.08 b 0091.05 >1.1 style="background:#BCD4E6;" | — 0.0252 0004.91 4.91 style="background:#BCD4E6;" | 0 RV 2019 [42]
c 0091.11 >1.1 0.0443 0011.409 11.4 0 RV 2019
Wolf 1061# 14.050 1010 10.1 rowspan="3" | 0.25 b b 0091.91 >1.9 0.0375 0004.9 4.89 0.03 RV 2015 [9][43][18]
c c

|| 0093.6 >3.6

0.0890 0018 17.9 0.03 RV 2015
d d 0096.5 >6.5 0.421 0184 184 0.02 RV 2015
Gliese 83.1# 14.578 1229.8 12.30 rowspan="2"|0.14 b 0930.9 >30.9 0.403 0241.883 242 0.18 RV 2019 1 candidate[18][44][note 7]
c 0971.6 >71.6 0.870 0767.887 768 0.33 RV 2019
Gliese 687# 14.839 0915 9.15 rowspan="2" |0.41 b 0917.2 >17.2 0.163 0038.142 38.1 0.17 RV 2014 [45][18][44]
c 0916.0 >16.0 1.165 0727.562 728 0.40 RV 2019
Gliese 674 14.849 0938 9.38 0.35 b 0911.2 >11.2 0.039 00047 4.69 0.23 RV 2007 [46][47][18]
Gliese 876# 15.238 1020 10.2 rowspan = "4"|0.33 d 0006.8 6.8 0.0208 0001.9379 1.94 0.12 59.5 RV 2005 [48][18]
c 0227 230 0.133 0030.228 30.2 0.001 59.5 RV 2000
b 0723 720 0.213 0061.0 61.0 0.001 59.5 RV 1998
e 0014.6 15 0.342 0124.518 125 0.18 59.5 RV 2010
Gliese 832# 16.200 0867 8.67 rowspan = "2"|0.45 c c

|| style="background:#BCD4E6;" |0095.4 >5.4

style="background:#BCD4E6;" | — 0.164 0035.65 35.7 style="background:#BCD4E6;" | 0.06 RV 2014 [9][49][18]
b 9205.6 >206 3.67 3831 3,830 0.06 RV 2008
Gliese 3323# 17.531 1220 12.2 rowspan = "2"| 0.164 b 0092.02 >2.0 0.0328 0005.36 5.36 0.23 0.2 RV 2017 [50]
c 0092.31 >2.3 0.126 0040.5 40.5 0.17 0.2 RV 2017
Gliese 251 18.215 0965 9.65 0.372 b 0094.0 >4.0 0.0818 0014.238 14.2 0.10 0.10 RV 2020 2 previous candidates; replaced by a single-planet solution[51][18][19]
Gliese 205# 18.604 0797 7.97 rowspan = "2"| 0.63 b 0910.3 >10.3 0.109 16.9 0.11 RV 2019 [18]
c 0913.8 >13.8 0.689 271 0.04 RV 2019
Gliese 229 A# 18.791 0814 8.14 rowspan="2"|0.58 c 0097.3 >7.3 style="background:#BCD4E6;" | — 0.339 0122.0 122 style="background:#BCD4E6;" | 0.19 RV 2020 Ab not confirmed until 2020.[52]
b 0098.5 >8.5 0.898 0526.1 526 0.10 RV 2014
Gliese 754 19.272 1223 12.23 0.18 b 0099.8 >9.8 0.277 0078.37 78.4 0.03 RV 2019 [18]
Gliese 752 A 19.292 0913 9.13 0.46 b 0913.6 >13.6 0.338 0106.2 106 0.03 RV 2018 [53][18]
Gliese 588# 19.300 0931.1 9.31 rowspan="2"|0.46 b 0092.4 >2.4 0.049 5.81 0.04 RV 2019 [18]
c 0910.3 >10.3 0.530 206 0.06 RV 2019
82 G. Eridani# 19.704 0426 4.26 rowspan = "4"|0.85 b 0092.7 >2.7 0.121 0018 18.3 0 ~0 RV 2011 2 candidates
[54][55][56]
c 0092.4 >2.4 0.204 0040 40.1 0 ~0 RV 2011
d 0094.8 >4.8 0.350 0090.3 90 0 ~0 RV 2011
e 0094.77 >4.8 0.509 0147 147 0.29 0.29 RV 2017
Gliese 784 20.106 0796.6 7.97 0.5 b 0099.4 >9.4 0.059 0006.6592 6.66 0.05 RV 2019 [18]
Gliese 555 20.395 1131.7 11.32 0.29 b 0930.1 >30.1 0.727 0449.6 450 0.04 RV 2019 [18]
Gliese 581# 20.549 1055 10.5 rowspan = "3"|0.31 e 0091.7 >1.7 0.0282 00032 3.15 0.0 ~45? RV 2009 2 disputed candidates and a disc
[57][58][59][60]
b 0915.8 >16 0.0406 00054 5.37 0.0 ~45? RV 2005
c 0095.5 >5.5 0.072 0013 12.9 0.0 ~45? RV 2007
Gliese 338 B 20.658 0700 7.0 0.64 b 0910.27 >10.3 0.141 0024.45 24.5 0.11 RV 2020 [61]
Gliese 625 21.131 1020 10.2 0.30 b 0092.82 >2.8 0.0784 0014.6 14.6 0.13 ~0.1 RV 2017 [62]
HD 219134# 21.336 0557 5.57 rowspan = "6"|0.78 b 0004.74 4.7 1.60 0.0388 00031 3.09 0 ~0 85.05 RV 2015 [63][64][65]
c c 0004.36 4.4 1.51 0.065 00068 6.77 0.0620 0.062 87.28 RV 2015
d d 0916.17 >16 0.237 0047 46.9 0.138 0.138 ~87? RV 2015
f f 0097.3 >7.3 0.146 0023 22.7 0.148 0.148 ~87? RV 2015
g g 0911 >11 0.375 0094 94.2 0 0 ~87? RV 2015
h h (e) 9108 >108 3.11 2247 2,247 0.06 0.06 ~87? RV 2015
LTT 1445 A 22.387 1052.9 10.53 rowspan="2"| 0.26 c 0001.54 1.54 1.15 0.0266 0003.12390 3.12 <0.22 87.43 Transit 2021 [66][67]
b 0002.87 2.87 1.30 0.0381 0005.35877 5.36 <0.11 89.68 Transit 2019
Gliese 880 22.397 0863.8 8.64 0.59 b↑ 0098.5 >8.5 style="background:#BCD4E6;" | — 0.187 0039.372 39.4 style="background:#BCD4E6;" | 0.13 RV 2019 [18]
Gliese 393 22.953 0865 8.65 0.41 b 0091.71 >1.71 0.0540 0007.0268 7.03 0.00 RV 2019 [18][68]
Gliese 667 C# 23.623 1022 10.2 rowspan = "2"|0.33 b3 b 0095.4 >5.4 0.049 00072 7.20 0.13 ~52? RV 2009 5 dubious candidates
[69][9][70][71][18]
c3 c

|| 0093.9 >3.9

1.5 ~1.5? 0.1251 0028 28.2 0.03 ~52? RV 2011
Gliese 514 24.878 0903 9.03 0.53 b 0094.3 >4.3 0.097 15.0 0.05 RV 2019 [18]
Gliese 486 26.351 1139.5 11.395 0.32 b 0002.82 2.8 1.31 0.0173 0001.47 1.47 0 <0.05 88.4 Transit 2021 [72]
Gliese 300 26.473 1213 12.13 0.26 b↑ 0096.8 >6.8 style="background:#BCD4E6;" | — 0.050 0008.328 8.33 style="background:#BCD4E6;" | 0.29 RV 2019 [18]
Gliese 686 26.613 0958 9.58 0.42 b 0097.1 >7.1 0.097 0015.5 15.5 0.04 RV 2019 [73][18]
61 Virginis# 27.836 0474 4.74 rowspan = "2"|0.95 b 0095.1 >5.1 0.0502 00042 4.22 0.12 ~0.1 ~77? RV 2009 a debris disc,[74] 1 disputed candidate[20]
c 0918.2 >18 0.218 0038 38.0 0.14 ~77? RV 2009
CD Ceti 28.052 1400.1 14.001 0.161 b 0094.395 >4.0 0.0185 0002.2907 2.29 0 RV 2020 [75]
Gliese 785# 28.739 0613 6.13 rowspan = "2"|0.78 b 0916.9 >17 0.32 0074.7 75 0.13 RV 2010 [76]
c 0924 >24 1.18 0526 530 0.32 ~0.3 RV 2011
Gliese 849# 28.750 1042 10.4 rowspan = "2"|0.49 b 9269.9 >270 2.26 1905 1,910 0.05 RV 2006 [77][18]
c 9300 >300 4.82 5520 5,520 0.087 RV 2006
Gliese 433# 29.605 0979 9.79 rowspan="3"|0.48 b 0096.0 >6.0 0.062 00074 7.37 0.04 RV 2009 [78][18][52]
d 0095.2 >5.2 0.178 00036.1 36.1 0.07 RV 2020
c 0932.42 >32 4.82 05094 5,090 0.12 RV 2012
Gliese 3325 30.123 1173 11.73 0.27 b 0911.8 >11.8 0.071 012.92 12.9 0.03 RV 2019 [18]
HD 102365 A 30.396 0489 4.89 0.85 b 0916.0 >16 0.46 0122 122 0.34 RV 2010 [79]
Gliese 367 30.719 0998 9.98 0.45 b 0000.546 0.55 0.72 0.0071 0000.321962 0.32 0 80.75 Transit 2021 [80]
Gliese 357# 30.776 1090 10.9 rowspan="3"|0.34 b 0006.1 6.1 1.17 0.035 3.93 0.02 88.92 Transit 2019 [81][18]
c 0093.6 >3.6 0.061 9.13 0.04 ~89? RV 2019
d 0097.7 >7.7 0.204 55.7 0.03 ~89? RV 2019
Gliese 176# 30.937 1010 10.1 rowspan="2"| 0.45 b 0098.0 >8.0 0.066 0008.77 8.77 0.08 RV 2007 1 dubious planet[82][83][18]
c↑ 0097.4 >7.4 0.146 28.6 0.02 RV 2019
Gliese 479 30.960 1066.3 10.66 0.43 b 0095.1 >5.1 0.074 11.3 0.03 RV 2019 [18]
Gliese 3512# 30.976 1311 13.11 rowspan="2"| 0.123 b 9147 >147 0.338 204 0.44 RV 2019 [84]
c 0954 >54 1.2 >1.2 1390 >1390 RV 2019
AU Microscopii# 31.683 0863 8.63 rowspan="2"| 0.50 b 0017 17 4.38 0.0645 0008.4629991 8.463 0.10 89.03 Transit 2020 [85][86]
c 0028 <28 3.51 0.1101 18.858991 18.86 0 88.62 Transit 2020
Gliese 436 31.882 1067 10.67 0.41 b 0021.36 21.4 4.33 0.0280 2.64 0.15 85.8 RV 2004 1 candidate[18]
Gliese 49 32.158 0890 8.9 0.57 b 0916.4 >16.4 0.106 17.3 0.03 RV 2019 [18]

Excluded objects

Unlike for bodies within the Solar System, there is no clearly established method for officially recognizing an exoplanet. According to the International Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[87] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases include LHS 288 (15.8 ly, in 2007)[88] and Gliese 1151 (26.2 ly, in 2021).[89][90][91] There are also several instances where proposed exoplanets were later disproved by subsequent studies, including candidates around Alpha Centauri B (4.36 ly),[92] Barnard's Star (5.96 ly),[93][94] Kapteyn's Star (12.8 ly),[95] Van Maanen 2 (14.1 ly),[96] Groombridge 1618 (15.9 ly),[97] AD Leonis (16.2 ly),[98] 40 Eridani A (16.3 ly),[99][20] Gliese 682 (16.3 ly),[52] VB 10 (19.3 ly),[100] and Fomalhaut (25.1 ly).[2]

In 2021, a candidate planet was detected around Vega, though it has yet to be confirmed.[101] Another candidate planet, Candidate 1, was directly imaged around Alpha Centauri A, though it may also be a clump of asteroids or an artifact of the discovery mechanism.[102]

The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion of deuterium. Some studies have calculated this to be somewhere around 13 times the mass of Jupiter, and therefore objects more massive than this are usually classified as brown dwarfs.[103] Some proposed candidate exoplanets were later shown to be massive enough to fall above the threshold, and are likely brown dwarfs, as was the case for: SCR 1845-6357 B (13.1 ly),[104] SDSS J1416+1348 B (30.3 ly),[105] and WISE 1217+1626 B (30 ly).[106]

Excluded from the current list are known examples of potential free-floating sub-brown dwarfs, or "rogue planets", which are bodies that are too small to undergo fusion yet they do not revolve around a star. Known such examples include: WISE 0855–0714 (7.4 ly),[107] UGPS 0722-05, (13.4 ly)[108] WISE 1541−2250 (18.6 ly),[109] and SIMP J01365663+0933473 (20.0 ly).[110]

Statistics

Planetary systems

Systems by planet count
Exoplanets No. of
systems
Systems
6 1 HD 219134
5 0
4 4 Tau Ceti, Luyten's Star, Gliese 876, 82 G. Eridani
3 7 Gliese 1061, YZ Ceti, Wolf 1061, Gliese 581, 61 Virginis, Gliese 433, Gliese 357
2 21
1 28
Total 62
Distribution of nearby planet-hosting systems
Distance
(light-years)
No. of known
star systems
No. of known
stars
No. of stars
hosting known
exoplanets
Percentage of
stars hosting
exoplanets
04 < 5


1 3 1 33%
07 5–10


8 11 3 27%
10–15 31 43 16 37%
15–20 57 77 13 17%
20–25 55 78 11 14%
25–32.6 ? ~200 20 ~10%
Total >413[111] 64 <15.5%
Systems visible with
the naked eye?
[note 3]
Visible host star? Systems
Yes (V < 6.5) 9
No (V > 6.5) 52

Exoplanets

Exoplanets by minimum estimated mass
Type Mass range[112] No.
Terran 0.5–5 M 49
Superterran 5–10 M 24
Neptunian 10–50 M 29
Jovian 50–600 M 10
Superjovian 2.1 >600 M


3
Total 114
Exoplanets by orbital radius
Orbital radius No. Notes
0.3 < 0.4 AU


85 Mercury orbits at 0.39 AU
0.4–1.0 AU 16 Earth orbits at 1.0 AU
1.0–5 AU 12
5 > 5 AU


2 Jupiter orbits at 5.2 AU
Exoplanets by orbital period
Orbital period No. Notes
1 < 90 days


78 Mercury takes 88 days
2 90–365 days


17
3 1–10 years


15 Jupiter takes 11.9 years
4 > 10 years


5
Exoplanets by orbital eccentricity
Orbital eccentricity No. Notes
0.01 < 0.02


18 Earth's is 0.0167
0.02–0.20 80
Mercury's is 0.205
0.3 > 0.20


15
Exoplanets by discovery year
Year No.
1998 1
2000 2
2004 1
2005 2
2006 2
2007 3
2008 1
2009 6
2010 3
2011 5
2012 1
2014 5
2015 9
2016 1
2017 15
2018 5
2019 38
2020 9
2021 4

See also


Notes

  1. Listed values are primarily taken from NASA Exoplanet Archive,[4] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
    "Exoplanet Catalog". Full table. http://exoplanet.eu/catalog/. 
    "Exoplanets Data Explorer". California Planet Survey. Click the "+" button to visualize additional parameters. http://exoplanets.org/table/. 
    "Open Exoplanet Catalogue". Click the "Show options" to visualize additional parameters. http://www.openexoplanetcatalogue.com/systems/. 
  2. For reference, the 104th closest known star system in November 2016 was 82 Eridani (19.7 ly).[5]
  3. 3.0 3.1 According to the Bortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has an apparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[7]
  4. The star Epsilon Eridani was named Ran (after Rán, the Norse goddess of the sea), and the planet Epsilon Eridani b was named AEgir (after Ægir, Rán's husband),[10] while the planet Fomalhaut b was named Dagon (after Dagon, an ancient Syrian “fish god”[11]).[12]
  5. Exoplanet naming convention assigns uncapitalized letters starting from b to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
  6. Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in the radial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on their orbital inclination (i). As such, most exoplanets only have an estimated minimum mass (Mreal*sin(i)), where their true masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[13]
  7. The star referred to as GJ 9066 in Feng et al. 2020 is the same as GJ 83.1 in Tuomi et al. 2019; see SIMBAD. Planets b and c are so called by Feng et al. 2020; in Tuomi et al. 2019 they are designated d and b, respectively. The planet designated c in Tuomi et al. 2019 was not detected by Feng et al. 2020, so it's considered a candidate here.

References

  1. Harrington, J. D.; Villard, Ray (2013-08-01). "NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut". NASA. http://www.nasa.gov/mission_pages/hubble/science/rogue-fomalhaut.html. 
  2. 2.0 2.1 Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS 117 (18): 9712–9722. doi:10.1073/pnas.1912506117. PMID 32312810. Bibcode2020PNAS..117.9712G. 
  3. Schneider, Jean. "Interactive Extra-solar Planets Catalog". Exoplanet.eu. http://exoplanet.eu/catalog.php. 
  4. 4.0 4.1 4.2 "NASA Exoplanet Archive—Confirmed Planetary Systems". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS. 
  5. Johnston, Robert (2014-11-02). "List of Nearby Stars: To 21 light years". Johnstonsarchive.net. http://www.johnstonsarchive.net/astro/nearstar.html. 
  6. "Stars within 10 parsecs". Solstation.com. 2014-04-25. http://www.solstation.com/stars/pc10.htm. 
  7. Bortle, John E. (2001). "Light Pollution And Astronomy: The Bortle Dark-Sky Scale". Sky & Telescope. http://www.skyandtelescope.com/resources/darksky/3304011.html. Retrieved 2014-05-20. 
  8. Powell, Richard (2006). "Stars within 50 light years". An Atlas of the Universe. http://www.atlasoftheuniverse.com/50lys.html. 
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 "The Habitable Exoplanets Catalog". University of Puerto Rico in Arecibo. 2015-09-01. http://phl.upr.edu/projects/habitable-exoplanets-catalog. 
  10. "epsilon Eridani". International Astronomical Union. http://nameexoworlds.iau.org/systems/105. 
  11. "Fomalhaut (alpha Piscis Austrini)". International Astronomical Union. http://nameexoworlds.iau.org/systems/103. 
  12. 12.0 12.1 "Final Results of NameExoWorlds Public Vote Released" (Press release). International Astronomical Union. 2015-12-15. Archived from the original on 2018-05-15. Retrieved 2018-03-17.
  13. Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W. et al. (2008). "The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets". Publications of the Astronomical Society of the Pacific 120 (867): 531–554. doi:10.1086/588487. Bibcode2008PASP..120..531C. 
  14. Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature 536 (7617): 437–440. doi:10.1038/nature19106. PMID 27558064. Bibcode2016Natur.536..437A. https://www.nature.com/articles/nature19106. 
  15. Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances 6 (3): eaax7467. doi:10.1126/sciadv.aax7467. PMID 31998838. Bibcode2020SciA....6.7467D. 
  16. Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics 635: L14. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. Bibcode2020A&A...635L..14K. 
  17. Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS 4 (6): 86. doi:10.3847/2515-5172/ab9ca9. Bibcode2020RNAAS...4...86B. 
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 18.20 18.21 18.22 18.23 18.24 18.25 18.26 18.27 18.28 18.29 18.30 18.31 18.32 Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  19. 19.0 19.1 Stock, S. et al. (2020), "The CARMENES search for exoplanets around M dwarfs Three temperate-to-warm super-Earths", Astronomy & Astrophysics A112: 643, doi:10.1051/0004-6361/202038820, Bibcode2020A&A...643A.112S 
  20. 20.0 20.1 20.2 Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C. et al. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series 255 (1): 8. doi:10.3847/1538-4365/abe23c. Bibcode2021ApJS..255....8R. 
  21. Fulton, Benjamin J.; Rosenthal, Lee J.; Hirsch, Lea A.; Isaacson, Howard; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C. et al. (2021-05-24). "California Legacy Survey. II. Occurrence of Giant Planets beyond the Ice Line". The Astrophysical Journal Supplement Series 255 (1): 14. doi:10.3847/1538-4365/abfcc1. Bibcode2021ApJS..255...14F. 
  22. "eps Eri". California Institute of Technology. http://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=eps+Eri. 
  23. "eps Eridani c". Exoplanet.eu. http://exoplanet.eu/catalog/eps_eridani_c/. 
  24. Mawet, Dimitri et al. (2019). "Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet". The Astronomical Journal 157 (1): 33. doi:10.3847/1538-3881/aaef8a. Bibcode2019AJ....157...33M. 
  25. Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N. et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science 368 (6498): 1477–1481, doi:10.1126/science.aaz0795, PMID 32587019, Bibcode2020Sci...368.1477J 
  26. "Ross 128". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=Ross+128. 
  27. Howard, Andrew W. et al. (October 2014). "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal 794 (1): 9. doi:10.1088/0004-637X/794/1/51. 51. Bibcode2014ApJ...794...51H. 
  28. Trifonov, Trifon; Kürster, Martin; Zechmeister, Mathias; Tal-Or, Lev; Caballero, José A.; Quirrenbach, Andreas; Amado, Pedro J.; Ribas, Ignasi et al. (2018). "The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems". Astronomy and Astrophysics 609: A117. doi:10.1051/0004-6361/201731442. Bibcode2018A&A...609A.117T. 
  29. Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L. et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics 617: A104. doi:10.1051/0004-6361/201732535. Bibcode2018A&A...617A.104P. 
  30. Endl, M.; Kürster, M.; Els, S.; Hatzes, A. P.; Cochran, W. D.; Dennerl, K.; Döbereiner, S. (2002). "The planet search program at the ESO Coudé Echelle spectrometer. III. The complete Long Camera survey results". Astronomy and Astrophysics 392 (2): 671–690. doi:10.1051/0004-6361:20020937. Bibcode2002A&A...392..671E. 
  31. Feng, Fabo; Tuomi, Mikko; Jones, Hugh R. A. (23 March 2018). "Detection of the closest Jovian exoplanet in the Epsilon Indi triple system". arXiv:1803.08163 [astro-ph.EP].
  32. Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019). "Detection of the nearest Jupiter analog in radial velocity and astrometry data". Monthly Notices of the Royal Astronomical Society 490 (4): 5002–5016. doi:10.1093/mnras/stz2912. Bibcode2019MNRAS.490.5002F. 
  33. "tau Cet". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=tau+Cet. 
  34. "tau Ceti". Open Exoplanet Catalogue. http://www.openexoplanetcatalogue.com/system.html?id=tau%20Ceti%20b. 
  35. "tau Cet b". Exoplanet.eu. http://exoplanet.eu/catalog/tau_cet_b/. 
  36. "tau Cet c". Exoplanet.eu. http://exoplanet.eu/catalog/tau_cet_c/. 
  37. "tau Cet d". Exoplanet.eu. http://exoplanet.eu/catalog/tau_cet_d/. 
  38. Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S. et al. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061" (in en). Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/staa248. 
  39. "YZ Cet". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=YZ+Cet. 
  40. "YZ Cet e". Exoplanet.eu. 2017-08-15. http://exoplanet.eu/catalog/yz_cet_e/. 
  41. "GJ 273". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+273. 
  42. Caballero, J. A. et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (in en). Astronomy & Astrophysics 627: A49. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. Bibcode2019A&A...627A..49Z. https://www.aanda.org/articles/aa/pdf/forth/aa35460-19.pdf. 
  43. "Wolf 1061". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=Wolf+1061. 
  44. 44.0 44.1 Feng, Fabo (October 2020). "Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs". The Astrophysical Journal Supplement Series 250 (2): 29. doi:10.3847/1538-4365/abb139. Bibcode2020ApJS..250...29F. 
  45. "GJ 687". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+687. 
  46. "GJ 674". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+674. 
  47. "GJ 674 b". Exoplanet.eu. 2007-04-25. http://exoplanet.eu/catalog/gj_674_b/. 
  48. "GJ 876". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+876. 
  49. "GJ 832". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+832. 
  50. "GJ 3323". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+3323. 
  51. Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Burt, Jennifer A.; Rivera, Eugenio J.; Tuomi, Mikko; Teske, Johanna; Arriagada, Pamela et al. (12 April 2017). "The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey" (in en). The Astronomical Journal 153 (5): 208. doi:10.3847/1538-3881/aa66ca. ISSN 1538-3881. Bibcode2017AJ....153..208B. 
  52. 52.0 52.1 52.2 Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong et al. (8 January 2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series 246 (1): 11. doi:10.3847/1538-4365/ab5e7c. Bibcode2020ApJS..246...11F. 
  53. Kaminski, Adrian; Trifonov, Trifon; Caballero, José A.; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Amado, Pedro J.; Zechmeister, Mathias et al. (3 August 2018). "The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617". Astronomy & Astrophysics 618: A115. doi:10.1051/0004-6361/201833354. Bibcode2018A&A...618A.115K. 
  54. "HD 20794". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+20794. 
  55. "HD 20794 f". Exoplanet.eu. http://exoplanet.eu/catalog/hd_20794_f/. 
  56. "HD 20794 g". Exoplanet.eu. http://exoplanet.eu/catalog/hd_20794_g/. 
  57. "GJ 581". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+581. 
  58. "GJ 581 d". Exoplanet.eu. http://exoplanet.eu/catalog/gj_581_d/. 
  59. "GJ 581 f". Exoplanet.eu. http://exoplanet.eu/catalog/gj_581_f/. 
  60. "GJ 581 g". Exoplanet.eu. http://exoplanet.eu/catalog/gj_581_g/. 
  61. González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F. et al. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)". Astronomy & Astrophysics A93: 637. doi:10.1051/0004-6361/201937050. Bibcode2020A&A...637A..93G. 
  62. "GJ 625". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+625. 
  63. Vogt, Steven S. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal 814 (1): 12. doi:10.1088/0004-637X/814/1/12. Bibcode2015ApJ...814...12V. 
  64. Johnson, Marshall C. (April 2016). "A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134". The Astrophysical Journal 821 (2): 74. doi:10.3847/0004-637X/821/2/74. Bibcode2016ApJ...821...74J. 
  65. Gillon, Michaël et al. (2017). "Two massive rocky planets transiting a K-dwarf 6.5 parsecs away". Nature Astronomy 1: 0056. doi:10.1038/s41550-017-0056. Bibcode2017NatAs...1E..56G. 
  66. Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; Díaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A. et al. (24 June 2019) (in en). Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs. doi:10.3847/1538-3881/ab364d. 
  67. Winters, Jennifer G.; Cloutier, Ryan; Medina, Amber A.; Irwin, Jonathan M.; Charbonneau, David; Astudillo-Defru, Nicola; Bonfils, Xavier; Howard, Andrew W.; Isaacson, Howard; Bean, J. L.; Seifahrt, A.; Teske, J. K.; Eastman, Jason D.; Twicken, Joseph D.; Collins, K. A.; Jensen, E. L. N.; Quinn, S. N.; Payne, M. J.; Kristiansen, M. H.; Spencer, A.; Vanderburg, Andrew; Zechmeister, Mathias; Weiss, L. M.; Wang, S. X.; Wang, G.; Udry, Stéphane; Terentev, I. A.; Sturmer, J.; Stefansson, G.; Shectman, Stephen A.; Sefako, R.; Schwengeler, H. M.; Schwarz, R. P.; Scarsdale, N.; Rubenzahl, R. A.; Roy, A.; Rosenthal, L. J.; Robertson, P.; Petigura, Erik A.; Pepe, Francesco; Omohundro, M.; Murphy, J. M. A.; Murgas, Felipe; Movcnik, T.; Montet, B. T.; Mennickent, R.; Mayo, A. W.; Massey, B.; Lubin, J.; Lovis, Christophe; Lewin, P.; Kasper, D.; Kane, S. R.; Jenkins, J. M.; Huber, D.; Horne, K.; Hill, M. L.; Gorrini, P.; Giacalone, S.; Fulton, Benjamin J.; Forveille, Thierry; Figueira, Pedro; Fetherolf, T.; Dressing, Courtney D.; Díaz, Rodrigo F.; Delfosse, Xavier; Dalba, P. A.; Dai, F.; Cortes, C. C.; Crossfield, Ian J. M.; Crane, Jeffrey D.; Conti, D. M.; Collins, K. I.; Chontos, A.; Butler, R. Paul; Brown, P.; Brady, M.; Bouchy, François; Behmard, A.; Beard, C.; Batalha, Natalie M.; Almenara, José M. (30 July 2021). "A Second Planet Transiting LTT~1445A and a Determination of the Masses of Both Worlds". arXiv:2107.14737 [astro-ph.EP].
  68. Amado, Pedro J.; Bauer, Florian F.; Rodríguez López, Cristina; Rodríguez, Eloy; Cardona Guillén, C.; Perger, M.; Caballero, José A.; López-González, Maria J. et al. (2021-05-28). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics 650: A188. doi:10.1051/0004-6361/202140633. 
  69. "GJ 667 C". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+667+C. 
  70. "GJ 667 C d". Exoplanet.eu. http://exoplanet.eu/catalog/gj_667_c_d/. 
  71. "GJ 667 C h". Exoplanet.eu. 2016-02-23. http://exoplanet.eu/catalog/gj_667_c_h/. 
  72. Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, Ansgar; Bean, J. L.; Luque, R. et al. (5 March 2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation". Science 371 (6533): 1038–1041. doi:10.1126/science.abd7645. PMID 33674491. Bibcode2021Sci...371.1038T. 
  73. Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E. et al. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686". Astronomy & Astrophysics A193: 622. doi:10.1051/0004-6361/201834868. 
  74. "61 Vir". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=61+Vir. 
  75. Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D. et al. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b". Astronomy and Astrophysics 640: A50. doi:10.1051/0004-6361/202038031. Bibcode2020A&A...640A..50B. 
  76. "HD 192310". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+192310. 
  77. "GJ 849". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+849. 
  78. "GJ 433". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+433. 
  79. "HD 102365". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+102365. 
  80. Lam, Kristine W. F.; Csizmadia, Szilárd; Astudillo-Defru, Nicola; Bonfils, Xavier; Gandolfi, Davide; Padovan, Sebastiano; Esposito, Massimiliano; Hellier, Coel et al. (3 December 2021). "GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star". Science 374 (6572): 1271–1275. doi:10.1126/science.aay3253. PMID 34855492. Bibcode2021Sci...374.1271L. https://eprints.keele.ac.uk/10383/1/2112.01309.pdf. 
  81. Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P. et al. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation" (in en). Astronomy & Astrophysics A39: 628. doi:10.1051/0004-6361/201935801. Bibcode2019A&A...628A..39L. 
  82. "HD 285968". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+285968. 
  83. "GJ 176 c". Exoplanet.eu. 2010-12-17. http://exoplanet.eu/catalog/gj_176_c/. 
  84. Morales, J. C. et al. (2019). "A giant exoplanet orbiting a very-low-mass star challenges planet formation models". Science 365 (6460): 1441–1445. doi:10.1126/science.aax3198. ISSN 0036-8075. PMID 31604272. Bibcode2019Sci...365.1441M. 
  85. Plavchan, Peter et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature 582 (7813): 497–500. doi:10.1038/s41586-020-2400-z. PMID 32581383. Bibcode2020Natur.582..497P. 
  86. Martioli, E. (2021). "New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance". Astronomy & Astrophysics A177: 649. doi:10.1051/0004-6361/202040235. Bibcode2021A&A...649A.177M. 
  87. Lee, Rhodi (2015-09-18). "Want To Name An Exoplanet? Here's Your Chance". Tech Times. http://www.techtimes.com/articles/77119/20150818/want-to-name-an-exoplanet-heres-your-chance.htm. 
  88. Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C (2009). "A Search for Astrometric Companions to Stars in the Southern Hemisphere". Publications of the Astronomical Society of the Pacific 121 (878): 365. doi:10.1086/599044. Bibcode2009PASP..121..365B. 
  89. Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P. et al. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy 4 (6): 577–583. doi:10.1038/s41550-020-1011-9. Bibcode2020NatAs...4..577V. 
  90. Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D. et al. (3 February 2021). "The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star". The Astrophysical Journal Letters 919 (1): L9. doi:10.3847/2041-8213/abe2b2. Bibcode2021ApJ...919L...9M. 
  91. Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A. et al. (2021), "The CARMENES search for exoplanets around M dwarfs, No evidence for a super-Earth in a 2-day orbit around GJ 1151", Astronomy & Astrophysics 649: L12, doi:10.1051/0004-6361/202140786, Bibcode2021A&A...649L..12P 
  92. Rajpaul, Vinesh (19 October 2015). "Ghost in the time series: no planet for Alpha Cen B". Monthly Notices of the Royal Astronomical Society: Letters 456 (1): L6–L10. doi:10.1093/mnrasl/slv164. Bibcode2016MNRAS.456L...6R. 
  93. Ribas, I.; Tuomi, M.; Reiners, Ansgar; Butler, R. P. et al. (2018-11-14). "A candidate super-Earth planet orbiting near the snow line of Barnard's star". Nature (Holtzbrinck Publishing Group) 563 (7731): 365–368. doi:10.1038/s41586-018-0677-y. ISSN 0028-0836. OCLC 716177853. PMID 30429552. Bibcode2018Natur.563..365R. https://www.eso.org/public/archives/releases/sciencepapers/eso1837/eso1837a.pdf. 
  94. Lubin, Jack; Robertson, Paul; Stefansson, Gudmundur et al. (15 July 2021). "Stellar Activity Manifesting at a One-year Alias Explains Barnard b as a False Positive". The Astronomical Journal (American Astronomical Society) 162 (2): 61. doi:10.3847/1538-3881/ac0057. ISSN 0004-6256. Bibcode2021AJ....162...61L. 
  95. Bortle, Anna et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal 161 (5): 230. doi:10.3847/1538-3881/abec89. Bibcode2021AJ....161..230B. 
  96. Farihi, J.; Becklin, E. E.; Macintosh, B. A. (June 2004). "Mid-Infrared Observations of van Maanen 2: No Substellar Companion". Astrophysical Journal Letters 608 (2): L109–L112. doi:10.1086/422502. Bibcode2004ApJ...608L.109F. 
  97. Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh et al. (May 2010). "Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations". The Astrophysical Journal 714 (2): 1551–1569. doi:10.1088/0004-637X/714/2/1551. Bibcode2010ApJ...714.1551H. 
  98. Carleo, I. (June 2020). "The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b". Astronomy & Astrophysics 638: A5. doi:10.1051/0004-6361/201937369. Bibcode2020A&A...638A...5C. 
  99. Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik et al. (October 2018). "The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society 480 (2): 2411–2422. doi:10.1093/mnras/sty1933. Bibcode2018MNRAS.480.2411M. 
  100. "VB 10 b". Exoplanet.eu. http://exoplanet.eu/catalog/vb_10_b/. 
  101. Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth et al. (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal 161 (4): 157. doi:10.3847/1538-3881/abdec8. Bibcode2021AJ....161..157H. 
  102. Wagner, K.; Boehle, A.; Pathak, P.; Kasper, M.; Arsenault, R.; Jakob, G.; Käufl, U.; Leveratto, S. et al. (2021-02-10). "Imaging low-mass planets within the habitable zone of α Centauri" (in en). Nature Communications 12 (1): 922. doi:10.1038/s41467-021-21176-6. ISSN 2041-1723. PMID 33568657. Bibcode2021NatCo..12..922W. 
  103. Boss, Alan P.; Butler, R. Paul; Hubbard, William B. et al. (2007). "Working Group on Extrasolar Planets". Proceedings of the International Astronomical Union 1 (T26A): 183. doi:10.1017/S1743921306004509. Bibcode2007IAUTA..26..183B. 
  104. "SCR 1845 b". Exoplanet.eu. 2012-04-13. http://exoplanet.eu/catalog/scr_1845_b/. 
  105. "SDSS 141624 b". Exoplanet.eu. 2010-01-18. http://exoplanet.eu/catalog/sdss_141624_b/. 
  106. "WISE 1217+16A b". Exoplanet.eu. http://exoplanet.eu/catalog/wise_1217+16_a_b/. 
  107. Clavin, Whitney; Harrington, J. D. (2014-04-25). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA. http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425/. 
  108. Lucas, P. W.; Tinney, C. G.; Burningham, B. et al. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society 408 (1): L56–L60. doi:10.1111/j.1745-3933.2010.00927.x. Bibcode2010MNRAS.408L..56L. 
  109. Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R. et al. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal 743 (1): 50. doi:10.1088/0004-637X/743/1/50. Bibcode2011ApJ...743...50C. 
  110. "Astronomers discover a nearby free-range planet with incredible magne". http://www.astronomy.com/news/2018/08/free-range-planet. 
  111. "Stars within 10 parsecs". http://www.solstation.com/stars/pc10.htm. 
  112. "HEC: Periodic Table of Exoplanets". University of Puerto Rico at Arecibo. 2014-04-17. http://phl.upr.edu/projects/habitable-exoplanets-catalog/media/pte. 

External links

Template:Featured list is only for Wikipedia:Featured lists.