Chemistry:Ruthenium red

From HandWiki
Ammoniated ruthenium oxychloride
Ruthenium red cation.svg
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
UNII
Properties
Cl6H42N14O2Ru3
Molar mass 786.34 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

The inorganic dye ammoniated ruthenium oxychloride, also known as ruthenium red, is used in histology to stain aldehyde fixed mucopolysaccharides.

Ruthenium red (RR) has also been used as a pharmacological tool to study specific cellular mechanisms. Selectivity is a significant issue in such studies as RR is known to interact with many proteins.[1] These include mammalian ion channels (CatSper1, TASK, RyR1, RyR2, RyR3, TRPM6, TRPM8, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, TRPV6, TRPA1, mCa1, mCa2, CALHM1[2][3]) TRPP3,[4] a plant ion channel, Ca2+-ATPase, mitochondrial Ca2+ uniporter,[5] tubulin, myosin light-chain phosphatase, and Ca2+ binding proteins such as calmodulin. Ruthenium red displays nanomolar potency against several of its binding partners (e.g. TRPV4, ryanodine receptors,...). For example, it is a potent inhibitor of intracellular calcium release by ryanodine receptors (Kd ~20 nM).[6] As a TRPA1 blocker, it assists in reducing the airway inflammation caused by pepper spray.

RR has been used on plant material since 1890 for staining pectins, mucilages, and gums. RR is a stereoselective stain for pectic acid, insofar as the staining site occurs between each monomer unit and the next adjacent neighbor.[7]

References

  1. Vincent, F; Duncton, MA (2011). "TRPV4 agonists and antagonists". Curr Top Med Chem 11 (17): 2216–26. doi:10.2174/156802611796904861. PMID 21671873. 
  2. Ma, Z; Siebert, AP; Cheung, KH; Lee, RJ; Johnson, B; Cohen, AS; Vingtdeux, V; Marambaud, P et al. (2012). "Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability". Proc Natl Acad Sci USA 109 (28): E1963–71. doi:10.1073/pnas.1204023109. PMID 22711817. Bibcode2012PNAS..109E1963M. 
  3. Dreses-Werringloer, U; Vingtdeux, V; Zhao, H; Chandakkar, P; Davies, P; Marambaud, P (2013). "CALHM1 controls Ca2+-dependent MEK/ERK/RSK/MSK signaling in neurons". J Cell Sci 126 (Pt 5): 1199–206. doi:10.1242/jcs.117135. PMID 23345406. 
  4. Decaen, P. G.; Delling, M.; Vien, T. N.; Clapham, D. E. (2013). "Direct recording and molecular identification of the calcium channel of primary cilia". Nature 504 (7479): 315–318. doi:10.1038/nature12832. PMID 24336289. Bibcode2013Natur.504..315D. 
  5. Hajnóczky, G; Csordás, G; Das, S; Garcia-Perez, C; Saotome, M; Sinha Roy, S; Yi, M (2006). "Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis". Cell Calcium 40 (5–6): 553–60. doi:10.1016/j.ceca.2006.08.016. PMID 17074387. 
  6. Tripathy, Le Xu Ashutosh; Pasek, Daniel A.; Meissner, Gerhard (1998). "Potential for Pharmacology of Ryanodine Receptor/Calcium Release Channels". Ann NY Acad Sci 853 (1): 130–148. doi:10.1111/j.1749-6632.1998.tb08262.x. PMID 10603942. Bibcode1998NYASA.853..130T. http://www.annalsnyas.org/cgi/content/abstract/853/1/130. Retrieved 2006-10-22. 
  7. Mariani Colombo P, Rascio N. "Ruthenium red staining for electron microscopy of plant material". Journal of Ultrastructure Research Volume 60, Issue 2, August 1977, Pages 135–139