Meertens number

From HandWiki

In number theory and mathematical logic, a Meertens number in a given number base [math]\displaystyle{ b }[/math] is a natural number that is its own Gödel number. It was named after Lambert Meertens by Richard S. Bird as a present during the celebration of his 25 years at the CWI, Amsterdam.[1]

Definition

Let [math]\displaystyle{ n }[/math] be a natural number. We define the Meertens function for base [math]\displaystyle{ b \gt 1 }[/math] [math]\displaystyle{ F_{b} : \mathbb{N} \rightarrow \mathbb{N} }[/math] to be the following:

[math]\displaystyle{ F_{b}(n) = \sum_{i=0}^{k - 1} p_{k - i - 1}^{d_i}. }[/math]

where [math]\displaystyle{ k = \lfloor \log_{b}{n} \rfloor + 1 }[/math] is the number of digits in the number in base [math]\displaystyle{ b }[/math], [math]\displaystyle{ p_i }[/math] is the [math]\displaystyle{ i }[/math]-prime number, and

[math]\displaystyle{ d_i = \frac{n \bmod{b^{i+1}} - n \bmod b^i}{b^i} }[/math]

is the value of each digit of the number. A natural number [math]\displaystyle{ n }[/math] is a Meertens number if it is a fixed point for [math]\displaystyle{ F_{b} }[/math], which occurs if [math]\displaystyle{ F_{b}(n) = n }[/math]. This corresponds to a Gödel encoding.

For example, the number 3020 in base [math]\displaystyle{ b = 4 }[/math] is a Meertens number, because

[math]\displaystyle{ 3020 = 2^{3}3^{0}5^{2}7^{0} }[/math].

A natural number [math]\displaystyle{ n }[/math] is a sociable Meertens number if it is a periodic point for [math]\displaystyle{ F_{b} }[/math], where [math]\displaystyle{ F_{b}^k(n) = n }[/math] for a positive integer [math]\displaystyle{ k }[/math], and forms a cycle of period [math]\displaystyle{ k }[/math]. A Meertens number is a sociable Meertens number with [math]\displaystyle{ k = 1 }[/math], and a amicable Meertens number is a sociable Meertens number with [math]\displaystyle{ k = 2 }[/math].

The number of iterations [math]\displaystyle{ i }[/math] needed for [math]\displaystyle{ F_{b}^{i}(n) }[/math] to reach a fixed point is the Meertens function's persistence of [math]\displaystyle{ n }[/math], and undefined if it never reaches a fixed point.

Meertens numbers and cycles of Fb for specific b

All numbers are in base [math]\displaystyle{ b }[/math].

[math]\displaystyle{ b }[/math] Meertens numbers Cycles Comments
2 10, 110, 1010 [math]\displaystyle{ n \lt 2^{96} }[/math][2]
3 101 11 → 20 → 11 [math]\displaystyle{ n \lt 3^{60} }[/math][2]
4 3020 2 → 10 → 2 [math]\displaystyle{ n \lt 4^{48} }[/math][2]
5 11, 3032000, 21302000 [math]\displaystyle{ n \lt 5^{41} }[/math][2]
6 130 12 → 30 → 12 [math]\displaystyle{ n \lt 6^{37} }[/math][2]
7 202 [math]\displaystyle{ n \lt 7^{34} }[/math][2]
8 330 [math]\displaystyle{ n \lt 8^{32} }[/math][2]
9 7810000 [math]\displaystyle{ n \lt 9^{30} }[/math][2]
10 81312000 [math]\displaystyle{ n \lt 10^{29} }[/math][2]
11 [math]\displaystyle{ \varnothing }[/math] [math]\displaystyle{ n \lt 11^{44} }[/math][2]
12 [math]\displaystyle{ \varnothing }[/math] [math]\displaystyle{ n \lt 12^{40} }[/math][2]
13 [math]\displaystyle{ \varnothing }[/math] [math]\displaystyle{ n \lt 13^{39} }[/math][2]
14 13310 [math]\displaystyle{ n \lt 14^{25} }[/math][2]
15 [math]\displaystyle{ \varnothing }[/math] [math]\displaystyle{ n \lt 15^{37} }[/math][2]
16 12 2 → 4 → 10 → 2 [math]\displaystyle{ n \lt 16^{24} }[/math][2]

See also

References

  1. Richard S. Bird (1998). "Meertens number". Journal of Functional Programming 8 (1): 83–88. doi:10.1017/S0956796897002931. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 (sequence A246532 in the OEIS)

External links