Chemistry:Methylcrotonyl-CoA

From HandWiki
Revision as of 23:35, 5 February 2024 by Jslovo (talk | contribs) (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Methylcrotonyl-CoA
Methylcrotonyl coenzyme A.svg
Names
IUPAC name
3′-O-Phosphonoadenosine 5′-[(3R)-3-hydroxy-2-methyl-4-{[3-({2-[(3-methylbut-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl dihydrogen diphosphate]
Preferred IUPAC name
O1-{[(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methyl} O3-[(3R)-3-hydroxy-2-methyl-4-{[3-({2-[(3-methylbut-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate
Identifiers
3D model (JSmol)
MeSH Methylcrotonyl-CoA
Properties
C26H42N7O17P3S
Molar mass 849.636 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

3-Methylcrotonyl-CoA (β-Methylcrotonyl-CoA or MC-CoA) is an intermediate in the metabolism of leucine.[1][2][3]

It is found in mitochondria, where it is formed from isovaleryl-coenzyme A by isovaleryl coenzyme A dehydrogenase. It then reacts with CO2 to yield 3-Methylcrotonyl-CoA carboxylase. [4]

Leucine metabolism

See also

References

  1. 1.0 1.1 1.2 "International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)". Journal of the International Society of Sports Nutrition 10 (1): 6. February 2013. doi:10.1186/1550-2783-10-6. PMID 23374455. 
  2. 3.0 3.1 3.2 Nutrient Metabolism: Structures, Functions, and Genes (2nd ed.). Academic Press. May 2015. pp. 385–388. ISBN 978-0-12-387784-0. https://books.google.com/books?id=aTQTAAAAQBAJ&printsec=frontcover#v=onepage. Retrieved 6 June 2016. "Energy fuel: Eventually, most Leu is broken down, providing about 6.0kcal/g. About 60% of ingested Leu is oxidized within a few hours ... Ketogenesis: A significant proportion (40% of an ingested dose) is converted into acetyl-CoA and thereby contributes to the synthesis of ketones, steroids, fatty acids, and other compounds" 
    Figure 8.57: Metabolism of L-leucine
  3. "3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals". Orphanet Journal of Rare Diseases 7 (1): 31. May 2012. doi:10.1186/1750-1172-7-31. PMID 22642865.