Kaprekar number
In mathematics, a natural number in a given number base is a [math]\displaystyle{ p }[/math]-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has [math]\displaystyle{ p }[/math] digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.
Definition and properties
Let [math]\displaystyle{ n }[/math] be a natural number. We define the Kaprekar function for base [math]\displaystyle{ b \gt 1 }[/math] and power [math]\displaystyle{ p \gt 0 }[/math] [math]\displaystyle{ F_{p, b} : \mathbb{N} \rightarrow \mathbb{N} }[/math] to be the following:
- [math]\displaystyle{ F_{p, b}(n) = \alpha + \beta }[/math],
where [math]\displaystyle{ \beta = n^2 \bmod b^p }[/math] and
- [math]\displaystyle{ \alpha = \frac{n^2 - \beta}{b^p} }[/math]
A natural number [math]\displaystyle{ n }[/math] is a [math]\displaystyle{ p }[/math]-Kaprekar number if it is a fixed point for [math]\displaystyle{ F_{p, b} }[/math], which occurs if [math]\displaystyle{ F_{p, b}(n) = n }[/math]. [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ 1 }[/math] are trivial Kaprekar numbers for all [math]\displaystyle{ b }[/math] and [math]\displaystyle{ p }[/math], all other Kaprekar numbers are nontrivial Kaprekar numbers.
The earlier example of 45 satisfies this definition with [math]\displaystyle{ b = 10 }[/math] and [math]\displaystyle{ p = 2 }[/math], because
- [math]\displaystyle{ \beta = n^2 \bmod b^p = 45^2 \bmod 10^2 = 25 }[/math]
- [math]\displaystyle{ \alpha = \frac{n^2 - \beta}{b^p} = \frac{45^2 - 25}{10^2} = 20 }[/math]
- [math]\displaystyle{ F_{2, 10}(45) = \alpha + \beta = 20 + 25 = 45 }[/math]
A natural number [math]\displaystyle{ n }[/math] is a sociable Kaprekar number if it is a periodic point for [math]\displaystyle{ F_{p, b} }[/math], where [math]\displaystyle{ F_{p, b}^k(n) = n }[/math] for a positive integer [math]\displaystyle{ k }[/math] (where [math]\displaystyle{ F_{p, b}^k }[/math] is the [math]\displaystyle{ k }[/math]th iterate of [math]\displaystyle{ F_{p, b} }[/math]), and forms a cycle of period [math]\displaystyle{ k }[/math]. A Kaprekar number is a sociable Kaprekar number with [math]\displaystyle{ k = 1 }[/math], and a amicable Kaprekar number is a sociable Kaprekar number with [math]\displaystyle{ k = 2 }[/math].
The number of iterations [math]\displaystyle{ i }[/math] needed for [math]\displaystyle{ F_{p, b}^{i}(n) }[/math] to reach a fixed point is the Kaprekar function's persistence of [math]\displaystyle{ n }[/math], and undefined if it never reaches a fixed point.
There are only a finite number of [math]\displaystyle{ p }[/math]-Kaprekar numbers and cycles for a given base [math]\displaystyle{ b }[/math], because if [math]\displaystyle{ n = b^p + m }[/math], where [math]\displaystyle{ m \gt 0 }[/math] then
- [math]\displaystyle{ \begin{align} n^2 & = (b^p + m)^2 \\ & = b^{2p} + 2mb^p + m^2 \\ & = (b^p + 2m)b^p + m^2 \\ \end{align} }[/math]
and [math]\displaystyle{ \beta = m^2 }[/math], [math]\displaystyle{ \alpha = b^p + 2m }[/math], and [math]\displaystyle{ F_{p, b}(n) = b^p + 2m + m^2 = n + (m^2 + m) \gt n }[/math]. Only when [math]\displaystyle{ n \leq b^p }[/math] do Kaprekar numbers and cycles exist.
If [math]\displaystyle{ d }[/math] is any divisor of [math]\displaystyle{ p }[/math], then [math]\displaystyle{ n }[/math] is also a [math]\displaystyle{ p }[/math]-Kaprekar number for base [math]\displaystyle{ b^p }[/math].
In base [math]\displaystyle{ b = 2 }[/math], all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form [math]\displaystyle{ 2^n (2^{n + 1} - 1) }[/math] or [math]\displaystyle{ 2^n (2^{n + 1} + 1) }[/math] for natural number [math]\displaystyle{ n }[/math] are Kaprekar numbers in base 2.
Set-theoretic definition and unitary divisors
We can define the set [math]\displaystyle{ K(N) }[/math] for a given integer [math]\displaystyle{ N }[/math] as the set of integers [math]\displaystyle{ X }[/math] for which there exist natural numbers [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] satisfying the Diophantine equation[1]
- [math]\displaystyle{ X^2 = AN + B }[/math], where [math]\displaystyle{ 0 \leq B \lt N }[/math]
- [math]\displaystyle{ X = A + B }[/math]
An [math]\displaystyle{ n }[/math]-Kaprekar number for base [math]\displaystyle{ b }[/math] is then one which lies in the set [math]\displaystyle{ K(b^n) }[/math].
It was shown in 2000[1] that there is a bijection between the unitary divisors of [math]\displaystyle{ N - 1 }[/math] and the set [math]\displaystyle{ K(N) }[/math] defined above. Let [math]\displaystyle{ \operatorname{Inv}(a, c) }[/math] denote the multiplicative inverse of [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ c }[/math], namely the least positive integer [math]\displaystyle{ m }[/math] such that [math]\displaystyle{ am = 1 \bmod c }[/math], and for each unitary divisor [math]\displaystyle{ d }[/math] of [math]\displaystyle{ N - 1 }[/math] let [math]\displaystyle{ e = \frac{N - 1}{d} }[/math] and [math]\displaystyle{ \zeta(d) = d\ \text{Inv}(d, e) }[/math]. Then the function [math]\displaystyle{ \zeta }[/math] is a bijection from the set of unitary divisors of [math]\displaystyle{ N - 1 }[/math] onto the set [math]\displaystyle{ K(N) }[/math]. In particular, a number [math]\displaystyle{ X }[/math] is in the set [math]\displaystyle{ K(N) }[/math] if and only if [math]\displaystyle{ X = d\ \text{Inv}(d, e) }[/math] for some unitary divisor [math]\displaystyle{ d }[/math] of [math]\displaystyle{ N - 1 }[/math].
The numbers in [math]\displaystyle{ K(N) }[/math] occur in complementary pairs, [math]\displaystyle{ X }[/math] and [math]\displaystyle{ N - X }[/math]. If [math]\displaystyle{ d }[/math] is a unitary divisor of [math]\displaystyle{ N - 1 }[/math] then so is [math]\displaystyle{ e = \frac{N - 1}{d} }[/math], and if [math]\displaystyle{ X = d\operatorname{Inv}(d, e) }[/math] then [math]\displaystyle{ N - X = e\operatorname{Inv}(e, d) }[/math].
Kaprekar numbers for [math]\displaystyle{ F_{p, b} }[/math]
b = 4k + 3 and p = 2n + 1
Let [math]\displaystyle{ k }[/math] and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = 4k + 3 = 2(2k + 1) + 1 }[/math], and [math]\displaystyle{ p = 2n + 1 }[/math]. Then:
- [math]\displaystyle{ X_1 = \frac{b^p - 1}{2} = (2k + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
Let
[math]\displaystyle{ \begin{align} X_1 & = \frac{b^p - 1}{2} \\ & = \frac{b - 1}{2} \sum_{i = 0}^{p - 1} b^i \\ & = \frac{4k + 3 - 1}{2} \sum_{i = 0}^{2n + 1 - 1} b^i \\ & = (2k + 1) \sum_{i = 0}^{2n} b^i \end{align} }[/math]
Then,
[math]\displaystyle{ \begin{align} X_1^2 & = \left(\frac{b^p - 1}{2}\right)^2 \\ & = \frac{b^{2p} - 2b^p + 1}{4} \\ & = \frac{b^p(b^p - 2) + 1}{4} \\ & = \frac{(4k + 3)^{2n + 1}(b^p - 2) + 1}{4} \\ & = \frac{(4k + 3)^{2n}(b^p - 2)(4k + 4) - (4k + 3)^{2n}(b^p - 2) + 1}{4} \\ & = \frac{-(4k + 3)^{2n}(b^p - 2) + 1}{4} + (k + 1)(4k + 3)^{2n}(b^p - 2) \\ & = \frac{-(4k + 3)^{2n - 1}(b^p - 2)(4k + 4) + (4k + 3)^{2n - 1}(b^p - 2) + 1}{4} + (k + 1)b^{2n}(b^{2n + 1} - 2) \\ & = \frac{(4k + 3)^{2n - 1}(b^p - 2) + 1}{4} + (k + 1)b^{2n}(b^p - 2) - (k + 1)b^{2n - 1}(b^{2n + 1} - 2) \\ & = \frac{(4k + 3)^{p - 2}(b^p - 2) + 1}{4} + \sum_{i = p - 2}^{p - 1} (-1)^i(k + 1)b^i(b^p - 2) \\ & = \frac{(4k + 3)^{p - 2}(b^p - 2) + 1}{4} + (b^p - 2)(k + 1)\sum_{i = p - 2}^{p - 1} (-1)^i b^i \\ & = \frac{(4k + 3)^{1}(b^p - 2) + 1}{4} + (b^p - 2)(k + 1)\sum_{i = 1}^{p - 1} (-1)^i b^i \\ & = \frac{-(b^p - 2) + 1}{4} + (b^p - 2)(k + 1)\sum_{i = 0}^{p - 1} (-1)^i b^i \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) + \frac{-b^{2n + 1} + 3}{4} \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) + \frac{-4b^{2n + 1} + 3b^{2n + 1} + 3}{4} \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p + \frac{3b^{2n + 1} + 3}{4} \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p + \frac{3(4k + 3)^{p - 2} + 3}{4} + 3(k + 1) \sum_{i = p - 2}^{p - 1} (-1)^i b^i \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p + \frac{3(4k + 3)^{1} + 3}{4} + 3(k + 1) \sum_{i = 1}^{p - 1} (-1)^i b^i \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p + \frac{-3 + 3}{4} + 3(k + 1) \sum_{i = 0}^{p - 1} (-1)^i b^i \\ & = (b^p - 2)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) + 3(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p \\ & = (b^p - 2 + 3)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p \\ & = (b^p + 1)(k + 1)\left(\sum_{i = 0}^{2n} (-1)^i b^i\right) - b^p \\ & = (b^p + 1)\left(-1 + (k + 1)\sum_{i = 0}^{2n} (-1)^i b^i\right) + 1 \\ & = (b^p + 1)\left(k + (k + 1)\sum_{i = 1}^{2n} (-1)^i b^i\right) + 1 \\ & = (b^p + 1)\left(k + (k + 1)\sum_{i = 1}^{n} b^{2i} - b^{2i - 1}\right) + 1 \\ & = (b^p + 1)\left(k + (k + 1)\sum_{i = 1}^{n} (b - 1)b^{2i - 1}\right) + 1 \\ & = (b^p + 1)\left(k + \sum_{i = 1}^{n} ((k + 1)b - k - 1)b^{2i - 1}\right) + 1 \\ & = (b^p + 1)\left(k + \sum_{i = 1}^{n} (kb + (4k + 3) - k - 1)b^{2i - 1}\right) + 1 \\ & = (b^p + 1)\left(k + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + 1 \\ & = b^p \left(k + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) \end{align} }[/math]
The two numbers [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math] are
- [math]\displaystyle{ \beta = X_1^2 \bmod b^p = k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1} }[/math]
- [math]\displaystyle{ \alpha = \frac{X_1^2 - \beta}{b^p} = k + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1} }[/math]
and their sum is
[math]\displaystyle{ \begin{align} \alpha + \beta & = \left(k + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) \\ & = 2k + 1 + \sum_{i = 1}^{n} ((2k)b + 2(3k + 2))b^{2i - 1} \\ & = 2k + 1 + \sum_{i = 1}^{n} ((2k)b + (6k + 4))b^{2i - 1} \\ & = 2k + 1 + \sum_{i = 1}^{n} ((2k)b + (4k + 3))b^{2i - 1} + (2k + 1)b^{2i - 1} \\ & = 2k + 1 + \sum_{i = 1}^{n} ((2k + 1)b)b^{2i - 1} + (2k + 1)b^{2i - 1} \\ & = 2k + 1 + \sum_{i = 1}^{n} (2k + 1)b^{2i} + (2k + 1)b^{2i - 1} \\ & = 2k + 1 + \sum_{i = 1}^{2n} (2k + 1)b^{i} \\ & = \sum_{i = 0}^{2n} (2k + 1)b^{i} \\ & = (2k + 1) \sum_{i = 0}^{2n} b^i & = X_1 \\ \end{align} }[/math]
Thus, [math]\displaystyle{ X_1 }[/math] is a Kaprekar number.
- [math]\displaystyle{ X_2 = \frac{b^p + 1}{2} = X_1 + 1 }[/math] is a Kaprekar number for all natural numbers [math]\displaystyle{ n }[/math].
Let
[math]\displaystyle{ \begin{align} X_2 & = \frac{b^{2n + 1} + 1}{2} \\ & = \frac{b^{2n + 1} - 1}{2} + 1 \\ & = X_1 + 1 \end{align} }[/math]
Then,
[math]\displaystyle{ \begin{align} X_2^2 & = (X_1 + 1)^2 \\ & = X_1^2 + 2 X_1 + 1 \\ & = X_1^2 + 2 X_1 + 1 \\ & = b^p \left(k + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + b^p - 1 + 1 \\ & = b^p \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) \end{align} }[/math]
The two numbers [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math] are
- [math]\displaystyle{ \beta = X_2^2 \bmod b^p = k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1} }[/math]
- [math]\displaystyle{ \alpha = \frac{X_2^2 - \beta}{b^p} = k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1} }[/math]
and their sum is
[math]\displaystyle{ \begin{align} \alpha + \beta & = \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) + \left(k + 1 + \sum_{i = 1}^{n} (kb + (3k + 2))b^{2i - 1}\right) \\ & = 2k + 2 + \sum_{i = 1}^{n} ((2k)b + 2(3k + 2))b^{2i - 1} \\ & = 2k + 2 + \sum_{i = 1}^{n} ((2k)b + (6k + 4))b^{2i - 1} \\ & = 2k + 2 + \sum_{i = 1}^{n} ((2k)b + (4k + 3))b^{2i - 1} + (2k + 1)b^{2i - 1} \\ & = 2k + 2 + \sum_{i = 1}^{n} ((2k + 1)b)b^{2i - 1} + (2k + 1)b^{2i - 1} \\ & = 2k + 2 + \sum_{i = 1}^{n} (2k + 1)b^{2i} + (2k + 1)b^{2i - 1} \\ & = 2k + 2 + \sum_{i = 1}^{2n} (2k + 1)b^{i} \\ & = 1 + \sum_{i = 0}^{2n} (2k + 1)b^{i} \\ & = 1 + (2k + 1) \sum_{i = 0}^{2n} b^{i} \\ & = 1 + X_1 \\ & = X_2 \end{align} }[/math]
Thus, [math]\displaystyle{ X_2 }[/math] is a Kaprekar number.
b = m2k + m + 1 and p = mn + 1
Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m + 1 }[/math], and the power [math]\displaystyle{ p = mn + 1 }[/math]. Then:
- [math]\displaystyle{ X_1 = \frac{b^p - 1}{m} = (mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
- [math]\displaystyle{ X_2 = \frac{b^p + m - 1}{m} = X_1 + 1 }[/math] is a Kaprekar number.
b = m2k + m + 1 and p = mn + m − 1
Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:
- [math]\displaystyle{ X_1 = \frac{m(b^p - 1)}{4} = (m - 1)(mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
- [math]\displaystyle{ X_2 = \frac{mb^p + 1}{4} = X_3 + 1 }[/math] is a Kaprekar number.
b = m2k + m2 − m + 1 and p = mn + 1
Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m^2 - m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:
- [math]\displaystyle{ X_1 = \frac{(m - 1)(b^p - 1)}{m} = (m - 1)(mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
- [math]\displaystyle{ X_2 = \frac{(m - 1)b^p + 1}{m} = X_1 + 1 }[/math] is a Kaprekar number.
b = m2k + m2 − m + 1 and p = mn + m − 1
Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m^2 - m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:
- [math]\displaystyle{ X_1 = \frac{b^p - 1}{m} = (mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
- [math]\displaystyle{ X_2 = \frac{b^p + m - 1}{m} = X_3 + 1 }[/math] is a Kaprekar number.
Kaprekar numbers and cycles of [math]\displaystyle{ F_{p, b} }[/math] for specific [math]\displaystyle{ p }[/math], [math]\displaystyle{ b }[/math]
All numbers are in base [math]\displaystyle{ b }[/math].
Base [math]\displaystyle{ b }[/math] | Power [math]\displaystyle{ p }[/math] | Nontrivial Kaprekar numbers [math]\displaystyle{ n \neq 0 }[/math], [math]\displaystyle{ n \neq 1 }[/math] | Cycles |
---|---|---|---|
2 | 1 | 10 | [math]\displaystyle{ \varnothing }[/math] |
3 | 1 | 2, 10 | [math]\displaystyle{ \varnothing }[/math] |
4 | 1 | 3, 10 | [math]\displaystyle{ \varnothing }[/math] |
5 | 1 | 4, 5, 10 | [math]\displaystyle{ \varnothing }[/math] |
6 | 1 | 5, 6, 10 | [math]\displaystyle{ \varnothing }[/math] |
7 | 1 | 3, 4, 6, 10 | [math]\displaystyle{ \varnothing }[/math] |
8 | 1 | 7, 10 | 2 → 4 → 2 |
9 | 1 | 8, 10 | [math]\displaystyle{ \varnothing }[/math] |
10 | 1 | 9, 10 | [math]\displaystyle{ \varnothing }[/math] |
11 | 1 | 5, 6, A, 10 | [math]\displaystyle{ \varnothing }[/math] |
12 | 1 | B, 10 | [math]\displaystyle{ \varnothing }[/math] |
13 | 1 | 4, 9, C, 10 | [math]\displaystyle{ \varnothing }[/math] |
14 | 1 | D, 10 | [math]\displaystyle{ \varnothing }[/math] |
15 | 1 | 7, 8, E, 10 |
2 → 4 → 2 9 → B → 9 |
16 | 1 | 6, A, F, 10 | [math]\displaystyle{ \varnothing }[/math] |
2 | 2 | 11 | [math]\displaystyle{ \varnothing }[/math] |
3 | 2 | 22, 100 | [math]\displaystyle{ \varnothing }[/math] |
4 | 2 | 12, 22, 33, 100 | [math]\displaystyle{ \varnothing }[/math] |
5 | 2 | 14, 31, 44, 100 | [math]\displaystyle{ \varnothing }[/math] |
6 | 2 | 23, 33, 55, 100 |
15 → 24 → 15 41 → 50 → 41 |
7 | 2 | 22, 45, 66, 100 | [math]\displaystyle{ \varnothing }[/math] |
8 | 2 | 34, 44, 77, 100 |
4 → 20 → 4 11 → 22 → 11 45 → 56 → 45 |
2 | 3 | 111, 1000 | 10 → 100 → 10 |
3 | 3 | 111, 112, 222, 1000 | 10 → 100 → 10 |
2 | 4 | 110, 1010, 1111, 10000 | [math]\displaystyle{ \varnothing }[/math] |
3 | 4 | 121, 2102, 2222, 10000 | [math]\displaystyle{ \varnothing }[/math] |
2 | 5 | 11111, 100000 |
10 → 100 → 10000 → 1000 → 10 111 → 10010 → 1110 → 1010 → 111 |
3 | 5 | 11111, 22222, 100000 | 10 → 100 → 10000 → 1000 → 10 |
2 | 6 | 11100, 100100, 111111, 1000000 |
100 → 10000 → 100 1001 → 10010 → 1001 100101 → 101110 → 100101 |
3 | 6 | 10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000 |
100 → 10000 → 100 122012 → 201212 → 122012 |
2 | 7 | 1111111, 10000000 |
10 → 100 → 10000 → 10 1000 → 1000000 → 100000 → 1000 100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110 |
3 | 7 | 1111111, 1111112, 2222222, 10000000 |
10 → 100 → 10000 → 10 1000 → 1000000 → 100000 → 1000 1111121 → 1111211 → 1121111 → 1111121 |
2 | 8 | 1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000 | [math]\displaystyle{ \varnothing }[/math] |
3 | 8 | 2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000 | [math]\displaystyle{ \varnothing }[/math] |
2 | 9 | 10010011, 101101101, 111111111, 1000000000 |
10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10 1000 → 1000000 → 1000 10011010 → 11010010 → 10011010 |
Extension to negative integers
Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.
See also
- Arithmetic dynamics
- Automorphic number
- Dudeney number
- Factorion
- Happy number
- Kaprekar's constant
- Meertens number
- Narcissistic number
- Perfect digit-to-digit invariant
- Perfect digital invariant
- Sum-product number
Notes
References
- D. R. Kaprekar (1980–1981). "On Kaprekar numbers". Journal of Recreational Mathematics 13: 81–82.
- M. Charosh (1981–1982). "Some Applications of Casting Out 999...'s". Journal of Recreational Mathematics 14: 111–118.
- Iannucci, Douglas E. (2000). "The Kaprekar Numbers". Journal of Integer Sequences 3: 00.1.2. Bibcode: 2000JIntS...3...12I. https://cs.uwaterloo.ca/journals/JIS/VOL3/iann2a.html.
Original source: https://en.wikipedia.org/wiki/Kaprekar number.
Read more |