Snub order-8 triangular tiling
From HandWiki
In geometry, the snub tritetratrigonal tiling or snub order-8 triangular tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbols of s{(3,4,3)} and s{3,8}.
Images
Drawn in chiral pairs:
Symmetry
The alternated construction from the truncated order-8 triangular tiling has 2 colors of triangles and achiral symmetry. It has Schläfli symbol of s{3,8}.
Related polyhedra and tiling
Uniform octagonal/triangular tilings | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [8,3], (*832) | [8,3]+ (832) |
[1+,8,3] (*443) |
[8,3+] (3*4) | ||||||||||
{8,3} | t{8,3} | r{8,3} | t{3,8} | {3,8} | rr{8,3} s2{3,8} |
tr{8,3} | sr{8,3} | h{8,3} | h2{8,3} | s{3,8} | |||
or |
or |
||||||||||||
Uniform duals | |||||||||||||
V83 | V3.16.16 | V3.8.3.8 | V6.6.8 | V38 | V3.4.8.4 | V4.6.16 | V34.8 | V(3.4)3 | V8.6.6 | V35.4 | |||
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.
See also
- Square tiling
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W.. "Hyperbolic tiling". http://mathworld.wolfram.com/HyperbolicTiling.html.
- Weisstein, Eric W.. "Poincaré hyperbolic disk". http://mathworld.wolfram.com/PoincareHyperbolicDisk.html.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Original source: https://en.wikipedia.org/wiki/Snub order-8 triangular tiling.
Read more |