Truncated order-4 heptagonal tiling
From HandWiki
In geometry, the truncated order-4 heptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{7,4}.
Constructions
There are two uniform constructions of this tiling, first by the [7,4] kaleidoscope, and second by removing the last mirror, [7,4,1+], gives [7,7], (*772).
Name | Tetraheptagonal | Truncated heptaheptagonal |
---|---|---|
Image | ||
Symmetry | [7,4] (*742) |
[7,7] = [7,4,1+] (*772) = |
Symbol | t{7,4} | tr{7,7} |
Coxeter diagram |
Symmetry
There is only one simple subgroup [7,7]+, index 2, removing all the mirrors. This symmetry can be doubled to 742 symmetry by adding a bisecting mirror.
Type | Reflectional | Rotational |
---|---|---|
Index | 1 | 2 |
Diagram | ||
Coxeter (orbifold) |
[7,7] = (*772) |
[7,7]+ = (772) |
Related polyhedra and tiling
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.
See also
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W.. "Hyperbolic tiling". http://mathworld.wolfram.com/HyperbolicTiling.html.
- Weisstein, Eric W.. "Poincaré hyperbolic disk". http://mathworld.wolfram.com/PoincareHyperbolicDisk.html.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Original source: https://en.wikipedia.org/wiki/Truncated order-4 heptagonal tiling.
Read more |