Truncated tetrahexagonal tiling

From HandWiki

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{6,4}.

Dual tiling

H2checkers 246.png Hyperbolic domains 642.png
The dual tiling is called an order-4-6 kisrhombille tiling, made as a complete bisection of the order-4 hexagonal tiling, here with triangles shown in alternating colors. This tiling represents the fundamental triangular domains of [6,4] (*642) symmetry.

Related polyhedra and tilings

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,4] symmetry, and 7 with subsymmetry.


Symmetry

Truncated tetrahexagonal tiling with mirror lines in green, red, and blue: CDel node c3.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node c2.png
Symmetry diagrams for small index subgroups of [6,4], shown in a hexagonal translational cell within a {6,6} tiling, with a fundamental domain in yellow.

The dual of the tiling represents the fundamental domains of (*642) orbifold symmetry. From [6,4] symmetry, there are 15 small index subgroup by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images unique mirrors are colored red, green, and blue, and alternately colored triangles show the location of gyration points. The [6+,4+], (32×) subgroup has narrow lines representing glide reflections. The subgroup index-8 group, [1+,6,1+,4,1+] (3232) is the commutator subgroup of [6,4].

Larger subgroup constructed as [6,4*], removing the gyration points of [6,4+], (3*22), index 6 becomes (*3333), and [6*,4], removing the gyration points of [6+,4], (2*33), index 12 as (*222222). Finally their direct subgroups [6,4*]+, [6*,4]+, subgroup indices 12 and 24 respectively, can be given in orbifold notation as (3333) and (222222).

Small index subgroups of [6,4]
Index 1 2 4
Diagram 642 symmetry 000.png 642 symmetry a00.png 642 symmetry 00a.png 642 symmetry 0a0.png 642 symmetry a0b.png 642 symmetry xxx.png
Coxeter [6,4]
CDel node c3.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node c2.png = CDel node c1.pngCDel split1-46.pngCDel branch c2-3.pngCDel label2.png = CDel node c1.pngCDel split1-46.pngCDel nodeab c2-3.png
[1+,6,4]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node c2.png = CDel branch c1.pngCDel split2-44.pngCDel node c2.png
[6,4,1+]
CDel node c3.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node h0.png = CDel node c3.pngCDel split1-66.pngCDel branch c1.pngCDel label2.png = CDel node c3.pngCDel split1-66.pngCDel nodeab c1.png
[6,1+,4]
CDel node c3.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node c2.png = CDel branch c3.pngCDel 2xa2xb-cross.pngCDel branch c2.pngCDel label2.png
[1+,6,4,1+]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node h0.png = CDel branch c1.pngCDel 2xa2xb-cross.pngCDel branch c1.png
[6+,4+]
CDel node h2.pngCDel 6.pngCDel node h4.pngCDel 4.pngCDel node h2.png
Generators {0,1,2} {1,010,2} {0,1,212} {0,101,2,121} {1,010,212,20102} {012,021}
Orbifold *642 *443 *662 *3222 *3232 32×
Semidirect subgroups
Diagram 642 symmetry 0aa.png 642 symmetry aa0.png 642 symmetry a0a.png 642 symmetry 0ab.png 642 symmetry ab0.png
Coxeter [6,4+]
CDel node c3.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h2.png
[6+,4]
CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node c2.png
[(6,4,2+)]
CDel node c1.pngCDel split1-46.pngCDel branch h2h2.pngCDel label2.png
[6,1+,4,1+]
CDel node c3.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node h0.png = CDel node c3.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h0.png = CDel node c3.pngCDel split1-66.pngCDel branch h2h2.pngCDel label2.png
= CDel node c3.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node h2.png = CDel branch c3.pngCDel 2xa2xb-cross.pngCDel branch h2h2.pngCDel label2.png
[1+,6,1+,4]
CDel node h0.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node c2.png = CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node c2.png = CDel branch h2h2.pngCDel split2-44.pngCDel node c2.png
= CDel node h2.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node c2.png = CDel branch h2h2.pngCDel 2xa2xb-cross.pngCDel branch c2.pngCDel label2.png
Generators {0,12} {01,2} {1,02} {0,101,1212} {0101,2,121}
Orbifold 4*3 6*2 2*32 2*33 3*22
Direct subgroups
Index 2 4 8
Diagram 642 symmetry aaa.png 642 symmetry abb.png 642 symmetry aab.png 642 symmetry aba.png 642 symmetry abc.png
Coxeter [6,4]+
CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h2.png = CDel node h2.pngCDel split1-64.pngCDel branch h2h2.pngCDel label2.png
[6,4+]+
CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h2.png = CDel branch h2h2.pngCDel split2-44.pngCDel node h2.png
[6+,4]+
CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h0.png = CDel node h2.pngCDel split1-66.pngCDel branch h2h2.pngCDel label2.png
[(6,4,2+)]+
CDel labelh.pngCDel node.pngCDel split1-46.pngCDel branch h2h2.pngCDel label2.png = CDel branch h2h2.pngCDel 2xa2xb-cross.pngCDel branch h2h2.pngCDel label2.png
[6+,4+]+ = [1+,6,1+,4,1+]
CDel node h4.pngCDel split1-46.pngCDel branch h4h4.pngCDel label2.png = CDel node h0.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node h0.png = CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 4.pngCDel node h0.png = CDel branch h2h2.pngCDel 2xa2xb-cross.pngCDel branch h2h2.png
Generators {01,12} {(01)2,12} {01,(12)2} {02,(01)2,(12)2} {(01)2,(12)2,2(01)22}
Orbifold 642 443 662 3222 3232
Radical subgroups
Index 8 12 16 24
Diagram 642 symmetry 0zz.png 642 symmetry zz0.png 642 symmetry azz.png 642 symmetry zza.png
Coxeter [6,4*]
CDel node c3.pngCDel 6.pngCDel node g.pngCDel 4sg.pngCDel node g.png = CDel branch c3.pngCDel 3a3b-cross.pngCDel branch c3.png
[6*,4]
CDel node g.pngCDel 6g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node c2.png
[6,4*]+
CDel node h0.pngCDel 6.pngCDel node g.pngCDel 4sg.pngCDel node g.png = CDel branch h2h2.pngCDel 3a3b-cross.pngCDel branch h2h2.png
[6*,4]+
CDel node g.pngCDel 6g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node h0.png
Orbifold *3333 *222222 3333 222222

See also

  • Tilings of regular polygons
  • List of uniform planar tilings

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links