Spherical polyhedron

From HandWiki
Short description: Partition of a sphere's surface into polygons
The most familiar spherical polyhedron is the football, thought of as a spherical truncated icosahedron.
This beach ball would be a hosohedron with 6 spherical lune faces, if the 2 white caps on the ends were removed.

In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of symmetrical polyhedra is most conveniently derived in this way.

The most familiar spherical polyhedron is the soccer ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the beach ball, thought of as a hosohedron.

Some "improper" polyhedra, such as hosohedra and their duals, dihedra, exist as spherical polyhedra, but their flat-faced analogs are degenerate. The example hexagonal beach ball, {2, 6}, is a hosohedron, and {6, 2} is its dual dihedron.

History

The first known man-made polyhedra are spherical polyhedra carved in stone. Many have been found in Scotland, and appear to date from the neolithic period (the New Stone Age).

During the 10th Century, the Islamic scholar Abū al-Wafā' Būzjānī (Abu'l Wafa) wrote the first serious study of spherical polyhedra.

Two hundred years ago, at the start of the 19th Century, Poinsot used spherical polyhedra to discover the four regular star polyhedra.

In the middle of the 20th Century, Coxeter used them to enumerate all but one of the uniform polyhedra, through the construction of kaleidoscopes (Wythoff construction).

Examples

All regular polyhedra, semiregular polyhedra, and their duals can be projected onto the sphere as tilings:

Schläfli
symbol
{p,q} t{p,q} r{p,q} t{q,p} {q,p} rr{p,q} tr{p,q} sr{p,q}
Vertex
config.
pq q.2p.2p p.q.p.q p.2q.2q qp q.4.p.4 4.2q.2p 3.3.q.3.p
Tetrahedral
symmetry
(3 3 2)
Uniform tiling 332-t0-1-.png
33
Uniform tiling 332-t01-1-.png
3.6.6
Uniform tiling 332-t1-1-.png
3.3.3.3
Uniform tiling 332-t12.png
3.6.6
Uniform tiling 332-t2.png
33
Uniform tiling 332-t02.png
3.4.3.4
Uniform tiling 332-t012.png
4.6.6
Spherical snub tetrahedron.png
3.3.3.3.3
Spherical triakis tetrahedron.png
V3.6.6
Spherical dual octahedron.png
V3.3.3.3
Spherical triakis tetrahedron.png
V3.6.6
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical tetrakis hexahedron.png
V4.6.6
Uniform tiling 532-t0.png
V3.3.3.3.3
Octahedral
symmetry
(4 3 2)
Uniform tiling 432-t0.png
43
Uniform tiling 432-t01.png
3.8.8
Uniform tiling 432-t1.png
3.4.3.4
Uniform tiling 432-t12.png
4.6.6
Uniform tiling 432-t2.png
34
Uniform tiling 432-t02.png
3.4.4.4
Uniform tiling 432-t012.png
4.6.8
Spherical snub cube.png
3.3.3.3.4
Spherical triakis octahedron.png
V3.8.8
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical tetrakis hexahedron.png
V4.6.6
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical disdyakis dodecahedron.png
V4.6.8
Spherical pentagonal icositetrahedron.png
V3.3.3.3.4
Icosahedral
symmetry
(5 3 2)
Uniform tiling 532-t0.png
53
Uniform tiling 532-t01.png
3.10.10
Uniform tiling 532-t1.png
3.5.3.5
Uniform tiling 532-t12.png
5.6.6
Uniform tiling 532-t2.png
35
Uniform tiling 532-t02.png
3.4.5.4
Uniform tiling 532-t012.png
4.6.10
Spherical snub dodecahedron.png
3.3.3.3.5
Spherical triakis icosahedron.png
V3.10.10
Spherical rhombic triacontahedron.png
V3.5.3.5
Spherical pentakis dodecahedron.png
V5.6.6
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Spherical disdyakis triacontahedron.png
V4.6.10
Spherical pentagonal hexecontahedron.png
V3.3.3.3.5
Dihedral
example
(p=6)
(2 2 6)
Hexagonal dihedron.png
62
Dodecagonal dihedron.png
2.12.12
Hexagonal dihedron.png
2.6.2.6
Spherical hexagonal prism.svg
6.4.4
Hexagonal Hosohedron.svg
26
Spherical truncated trigonal prism.png
2.4.6.4
Spherical truncated hexagonal prism.png
4.4.12
Spherical hexagonal antiprism.svg
3.3.3.6
Tiling of the sphere by spherical triangles (icosahedron with some of its spherical triangles distorted).
n 2 3 4 5 6 7 ...
n-Prism
(2 2 p)
Tetragonal dihedron.png Spherical triangular prism.svg Spherical square prism2.png Spherical pentagonal prism.svg Spherical hexagonal prism2.png Spherical heptagonal prism.svg ...
n-Bipyramid
(2 2 p)
Spherical digonal bipyramid2.svg Spherical trigonal bipyramid.svg Spherical square bipyramid2.svg Spherical pentagonal bipyramid.svg Spherical hexagonal bipyramid2.png Spherical heptagonal bipyramid.svg ...
n-Antiprism Spherical digonal antiprism.svg Spherical trigonal antiprism.svg Spherical square antiprism.svg Spherical pentagonal antiprism.svg Spherical hexagonal antiprism.svg Spherical heptagonal antiprism.svg ...
n-Trapezohedron Spherical digonal antiprism.svg Spherical trigonal trapezohedron.svg Spherical tetragonal trapezohedron.svg Spherical pentagonal trapezohedron.svg Spherical hexagonal trapezohedron.svg Spherical heptagonal trapezohedron.svg ...

Improper cases

Spherical tilings allow cases that polyhedra do not, namely hosohedra: figures as {2,n}, and dihedra: figures as {n,2}. Generally, regular hosohedra and regular dihedra are used.


Relation to tilings of the projective plane

Spherical polyhedra having at least one inversive symmetry are related to projective polyhedra[1] (tessellations of the real projective plane) – just as the sphere has a 2-to-1 covering map of the projective plane, projective polyhedra correspond under 2-fold cover to spherical polyhedra that are symmetric under reflection through the origin.

The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra:[2]

  • Hemi-cube, {4,3}/2
  • Hemi-octahedron, {3,4}/2
  • Hemi-dodecahedron, {5,3}/2
  • Hemi-icosahedron, {3,5}/2
  • Hemi-dihedron, {2p,2}/2, p>=1
  • Hemi-hosohedron, {2,2p}/2, p>=1

See also

References

  1. McMullen, Peter; Schulte, Egon (2002). "6C. Projective Regular Polytopes". Abstract Regular Polytopes. Cambridge University Press. pp. 162–5. ISBN 0-521-81496-0. 
  2. Coxeter, H.S.M. (1969). "§21.3 Regular maps'". Introduction to Geometry (2nd ed.). Wiley. pp. 386–8. ISBN 978-0-471-50458-0. https://archive.org/details/introductiontoge00coxe. 

Further reading

  • Poinsot, L. (1810). "Memoire sur les polygones et polyèdres". J. De l'École Polytechnique 9: 16–48. 
  • Coxeter, H.S.M.; Longuet-Higgins, M.S.; Miller, J.C.P. (1954). "Uniform polyhedra". Phil. Trans. 246 A (916): 401–50. 
  • Coxeter, H.S.M. (1973). Regular Polytopes (3rd ed.). Dover. ISBN 0-486-61480-8.