Truncated triapeirogonal tiling

From HandWiki

In geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}.

Symmetry

Truncated triapeirogonal tiling with mirrors

The dual of this tiling represents the fundamental domains of [∞,3], *∞32 symmetry. There are 3 small index subgroup constructed from [∞,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A special index 4 reflective subgroup, is [(∞,∞,3)], (*∞∞3), and its direct subgroup [(∞,∞,3)]+, (∞∞3), and semidirect subgroup [(∞,∞,3+)], (3*∞).[1] Given [∞,3] with generating mirrors {0,1,2}, then its index 4 subgroup has generators {0,121,212}.

An index 6 subgroup constructed as [∞,3*], becomes [(∞,∞,∞)], (*∞∞∞).

Small index subgroups of [∞,3], (*∞32)
Index 1 2 3 4 6 8 12 24
Diagrams I32 symmetry mirrors.png I32 symmetry a00.png I32 symmetry 0bb.png I32 symmetry mirrors-index3.png I32 symmetry mirrors-index4a.png I32 symmetry 0zz.png I32 symmetry mirrors-index6-i2i2.png I32 symmetry mirrors-index8a.png I32 symmetry mirrors-index12a.png I32 symmetry mirrors-index24a.png
Coxeter
(orbifold)
[∞,3]
CDel node c1.pngCDel infin.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel node c2.pngCDel split1-i3.pngCDel branch c1-2.pngCDel label2.png
(*∞32)
[1+,∞,3]
CDel node h0.pngCDel infin.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel labelinfin.pngCDel branch c2.pngCDel split2.pngCDel node c2.png
(*∞33)
[∞,3+]
CDel node c1.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png
(3*∞)
[∞,∞]

(*∞∞2)
[(∞,∞,3)]

(*∞∞3)
[∞,3*]
CDel node c1.pngCDel infin.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel split2-ii.pngCDel node c1.png
(*∞3)
[∞,1+,∞]

(*(∞2)2)
[(∞,1+,∞,3)]

(*(∞3)2)
[1+,∞,∞,1+]

(*∞4)
[(∞,∞,3*)]

(*∞6)
Direct subgroups
Index 2 4 6 8 12 16 24 48
Diagrams I32 symmetry aaa.png I32 symmetry abb.png Ii2 symmetry aaa.png I32 symmetry mirrors-index4.png I32 symmetry azz.png Ii2 symmetry bab.png H2chess 26ia.png Ii2 symmetry abc.png H2chess 26ib.png
Coxeter
(orbifold)
[∞,3]+
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel node h2.pngCDel split1-i3.pngCDel branch h2h2.pngCDel label2.png
(∞32)
[∞,3+]+
CDel node h0.pngCDel infin.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel labelinfin.pngCDel branch h2h2.pngCDel split2.pngCDel node h2.png
(∞33)
[∞,∞]+

(∞∞2)
[(∞,∞,3)]+

(∞∞3)
[∞,3*]+
CDel node h2.pngCDel infin.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel labelinfin.pngCDel branch h2h2.pngCDel split2-ii.pngCDel node h2.png
(∞3)
[∞,1+,∞]+

(∞2)2
[(∞,1+,∞,3)]+

(∞3)2
[1+,∞,∞,1+]+

(∞4)
[(∞,∞,3*)]+

(∞6)

Related polyhedra and tiling

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

See also

References

  1. Norman W. Johnson and Asia Ivic Weiss, Quadratic Integers and Coxeter Groups, Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336 [1]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links