Snub tetraapeirogonal tiling

From HandWiki
Snub tetraapeirogonal tiling
Snub tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.∞
Schläfli symbol sr{∞,4} or s{4}
Wythoff symbol | ∞ 4 2
Coxeter diagram or
Symmetry group [∞,4]+, (∞42)
Dual Order-4-infinite floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

240px240px

The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

See also

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.