Order-6 octagonal tiling

From HandWiki

In geometry, the order-6 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,6}.

Symmetry

This tiling represents a hyperbolic kaleidoscope of 8 mirrors meeting at a point and bounding regular octagon fundamental domains. This symmetry by orbifold notation is called *33333333 with 8 order-3 mirror intersections. In Coxeter notation can be represented as [8*,6], removing two of three mirrors (passing through the octagon center) in the [8,6] symmetry.

Uniform constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 6 points, [8,6,1+], gives [(8,8,3)], (*883). Removing two mirrors as [8,6*], leaves remaining mirrors (*444444).

Four uniform constructions of 8.8.8.8
Uniform
Coloring
H2 tiling 268-1.png H2 tiling 288-2.png H2 tiling 688-5.png
Symmetry [8,6]
(*862)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 6.pngCDel node c3.png
[8,6,1+] = [(8,8,3)]
(*883)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel split1-88.pngCDel branch c2.png
[8,1+,6]
(*4232)
CDel node c1.pngCDel 8.pngCDel node h0.pngCDel 6.pngCDel node c2.png = CDel label4.pngCDel branch c1.pngCDel 2a2b-cross.pngCDel branch c2.png
[8,6*]
(*444444)
CDel node c1.pngCDel 8.pngCDel node g.pngCDel 6sg.pngCDel node g.png
Symbol {8,6} {8,6}​12 r(8,6,8)
Coxeter
diagram
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel split1-88.pngCDel branch.png CDel node 1.pngCDel 8.pngCDel node h0.pngCDel 6.pngCDel node.png = CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch.png CDel node 1.pngCDel 8.pngCDel node g.pngCDel 6sg.pngCDel node g.png

Related polyhedra and tiling

This tiling is topologically related as a part of sequence of regular tilings with octagonal faces, starting with the octagonal tiling, with Schläfli symbol {8,n}, and Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel n.pngCDel node.png, progressing to infinity.

n82 symmetry mutations of regular tilings: 8n [v · d · e]
Space Spherical Compact hyperbolic Paracompact
Tiling H2-8-3-dual.svg H2 tiling 248-1.png H2 tiling 258-1.png H2 tiling 268-1.png H2 tiling 278-1.png H2 tiling 288-4.png H2 tiling 28i-4.png
Config. 8.8 83 84 85 86 87 88 ...8


See also

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links