Rhombitriapeirogonal tiling

From HandWiki

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

Symmetry

This tiling has [∞,3], (*∞32) symmetry. There is only one uniform coloring.

Similar to the Euclidean rhombitrihexagonal tiling, by edge-coloring there is a half symmetry form (3*∞) orbifold notation. The apeireogons can be considered as truncated, t{∞} with two types of edges. It has Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node 1.png, Schläfli symbol s2{3,∞}. The squares can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, an infinite-order triangular tiling results, constructed as a snub triapeirotrigonal tiling, CDel node h.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node.png.

Related polyhedra and tiling

Symmetry mutations

This hyperbolic tiling is topologically related as a part of sequence of uniform cantellated polyhedra with vertex configurations (3.4.n.4), and [n,3] Coxeter group symmetry.

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links