Hexaoctagonal tiling

From HandWiki

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,6,1+], gives [(8,8,3)], (*883). Removing the mirror between the order 2 and 8 points, [1+,8,6], gives [(4,6,6)], (*664). Removing two mirrors as [8,1+,6,1+], leaves remaining mirrors (*4343).

Four uniform constructions of 6.8.6.8
Uniform
Coloring
H2 tiling 268-2.png H2 tiling 388-5.png H2 tiling 466-5.png
Symmetry [8,6]
(*862)
CDel node c3.pngCDel 8.pngCDel node c1.pngCDel 6.pngCDel node c2.png
[(8,3,8)] = [8,6,1+]
(*883)
CDel node c3.pngCDel split1-88.pngCDel branch c1.png
[(6,4,6)] = [1+,8,6]
(*664)
CDel label4.pngCDel branch c1.pngCDel split2-66.pngCDel node c2.png
[1+,8,6,1+]
(*4343)
CDel branch c1.pngCDel 4a4b-cross.pngCDel branch c1.png
Symbol r{8,6} r{(8,3,8)} r{(6,4,6)}
Coxeter
diagram
CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node h0.png = CDel node.pngCDel split1-88.pngCDel branch 11.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel branch 11.pngCDel split2-66.pngCDel node.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node h0.png =
CDel branch 11.pngCDel 4a4b-cross.pngCDel branch 11.png

Symmetry

The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of [8,6].

862 symmetry z0z.png
[1+,8,4,1+], (*4343)
862 symmetry b0b.png
[(8,4,2+)], (2*43)

Related polyhedra and tiling

See also

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links