Infinite-order pentagonal tiling

From HandWiki
Infinite-order pentagonal tiling
Infinite-order pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 5
Schläfli symbol {5,∞}
Wythoff symbol ∞ | 5 2
Coxeter diagram
Symmetry group [∞,5], (*∞52)
Dual Order-5 apeirogonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Symmetry

There is a half symmetry form, , seen with alternating colors:

200px

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n). Template:Regular pentagonal tiling table

See also

References

  • John H. Conway; Heidi Burgiel; Chaim Goodman-Strauss (2008). "Chapter 19, The Hyperbolic Archimedean Tessellations". The Symmetries of Things. Taylor & Francis. ISBN 978-1-56881-220-5. 
  • H. S. M. Coxeter (1999). "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8.