Hexaoctagonal tiling

From HandWiki
Revision as of 22:40, 6 February 2024 by imported>QCDvac (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,6,1+], gives [(8,8,3)], (*883). Removing the mirror between the order 2 and 8 points, [1+,8,6], gives [(4,6,6)], (*664). Removing two mirrors as [8,1+,6,1+], leaves remaining mirrors (*4343).

Four uniform constructions of 6.8.6.8
Uniform
Coloring
Symmetry [8,6]
(*862)
[(8,3,8)] = [8,6,1+]
(*883)
[(6,4,6)] = [1+,8,6]
(*664)
[1+,8,6,1+]
(*4343)
Symbol r{8,6} r{(8,3,8)} r{(6,4,6)}
Coxeter
diagram
= = =

Symmetry

The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of [8,6].


[1+,8,4,1+], (*4343)

[(8,4,2+)], (2*43)

See also

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.