Chemistry:Lead dioxide

From HandWiki
Revision as of 03:44, 6 February 2024 by Steve Marsio (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Lead dioxide
Sample of lead dioxide
Sample of lead dioxide
Names
IUPAC name
Lead(IV) oxide
Other names
Plumbic oxide
Plattnerite
Identifiers
ChemSpider
EC Number
  • 215-174-5
RTECS number
  • OGO700000
UNII
UN number 1872
Properties
PbO
2
Molar mass 239.1988 g/mol
Appearance dark-brown, black powder
Density 9.38 g/cm3
Melting point 290 °C (554 °F; 563 K) decomposes
insoluble
Solubility soluble in acetic acid
insoluble in alcohol
2.3
Structure
hexagonal
Hazards
Safety data sheet External MSDS
GHS pictograms GHS03: OxidizingGHS07: HarmfulGHS08: Health hazardGHS09: Environmental hazard
GHS Signal word Danger
H272, H302, H332, H360, H372, H373, H410
P201, P202, P210, P220, P221, P260, P261, P264, P270, P271, P273, P280, P281, P301+312, P304+312, P304+340, P308+313, P312, P314, P330, P370+378, P391, P405, P501
NFPA 704 (fire diamond)
Flash point Non-flammable
Related compounds
Other cations
Carbon dioxide
Silicon dioxide
Germanium dioxide
Tin dioxide
Related lead oxides
Lead(II) oxide
Lead(II,IV) oxide
Related compounds
Thallium(III) oxide
Bismuth(III) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Lead(IV) oxide, commonly known as lead dioxide, is an inorganic compound with the chemical formula PbO
2
. It is an oxide where lead is in an oxidation state of +4.[1] It is a dark-brown solid which is insoluble in water.[2] It exists in two crystalline forms. It has several important applications in electrochemistry, in particular as the positive plate of lead acid batteries.

Properties

Physical

Crystal structure of α-PbO
2
Crystal structure of β-PbO
2

Lead dioxide has two major polymorphs, alpha and beta, which occur naturally as rare minerals scrutinyite and plattnerite, respectively. Whereas the beta form had been identified in 1845,[3] α-PbO
2
was first identified in 1946 and found as a naturally occurring mineral 1988.[4]

The alpha form has orthorhombic symmetry, space group Pbcn (No. 60), Pearson symbol oP12, lattice constants a = 0.497 nm, b = 0.596 nm, c = 0.544 nm, Z = 4 (four formula units per unit cell).[4] The lead atoms are six-coordinate.

The symmetry of the beta form is tetragonal, space group P42/mnm (No. 136), Pearson symbol tP6, lattice constants a = 0.491 nm, c = 0.3385 nm, Z = 2[5] and related to the rutile structure and can be envisaged as containing columns of octahedra sharing opposite edges and joined to other chains by corners. This contrasts with the alpha form where the octahedra are linked by adjacent edges to give zigzag chains.[4]

Chemical

Lead dioxide decomposes upon heating in air as follows:

24 PbO
2
→ 2 Pb
12
O
19
+ 5 O
2
Pb
12
O
19
→ Pb
12
O
17
+ O
2
2 Pb
12
O
17
→ 8 Pb
3
O
4
+ O
2
2 Pb
3
O
4
→ 6 PbO + O
2

The stoichiometry of the end product can be controlled by changing the temperature – for example, in the above reaction, the first step occurs at 290 °C, second at 350 °C, third at 375 °C and fourth at 600 °C. In addition, Pb
2
O
3
can be obtained by decomposing PbO
2
at 580–620 °C under an oxygen pressure of 1,400 atm (140 MPa). Therefore, thermal decomposition of lead dioxide is a common way of producing various lead oxides.[6]

Lead dioxide is an amphoteric compound with prevalent acidic properties. It dissolves in strong bases to form the hydroxyplumbate ion, [Pb(OH)
6
]2−
:[2]

PbO
2
+ 2 NaOH + 2 H
2
O → Na
2
[Pb(OH)
6
]

It also reacts with basic oxides in the melt, yielding orthoplumbates M
4
[PbO
4
]
.

Because of the instability of its Pb4+ cation, lead dioxide reacts with hot acids, converting to the more stable Pb2+ state and liberating oxygen:[6]

2 PbO
2
+ 2 H
2
SO
4
→ 2 PbSO
4
+ 2 H
2
O + O
2
2 PbO
2
+ 4 HNO
3
→ 2 Pb(NO
3
)
2
+ 2 H
2
O + O
2
PbO
2
+ 4 HClPbCl
2
+ 2 H
2
O + Cl
2

However these reactions are slow.

Lead dioxide is well known for being a good oxidizing agent, with an example reactions listed below:[7]

2 MnSO
4
+ 5 PbO
2
+ 6 HNO
3
→ 2 HMnO
4
+ 2 PbSO
4
+ 3 Pb(NO
3
)
2
+ 2 H
2
O
2 Cr(OH)
3
+ 10 KOH + 3 PbO
2
→ 2 K
2
CrO
4
+ 3 K
2
PbO
2
+ 8 H
2
O

Electrochemical

Although the formula of lead dioxide is nominally given as PbO
2
, the actual oxygen to lead ratio varies between 1.90 and 1.98 depending on the preparation method. Deficiency of oxygen (or excess of lead) results in the characteristic metallic conductivity of lead dioxide, with a resistivity as low as 10−4 Ω·cm and which is exploited in various electrochemical applications. Like metals, lead dioxide has a characteristic electrode potential, and in electrolytes it can be polarized both anodically and cathodically. Lead dioxide electrodes have a dual action, that is both the lead and oxygen ions take part in the electrochemical reactions.[8]

Production

Chemical processes

Lead dioxide is produced commercially by several methods, which include oxidation of red lead (Pb
3
O
4
) in alkaline slurry in a chlorine atmosphere,[6] reaction of lead(II) acetate with "chloride of lime" (calcium hypochlorite),[9][10] The reaction of Pb
3
O
4
with nitric acid also affords the dioxide:[2][11]

Pb
3
O
4
+ 4 HNO
3
→ PbO
2
+ 2 Pb(NO
3
)
2
+ 2 H
2
O

PbO
2
reacts with sodium hydroxide to form the hexahydroxoplumbate(IV) ion [Pb(OH)
6
]2−
, soluble in water.

Electrolysis

An alternative synthesis method is electrochemical: lead dioxide forms on pure lead, in dilute sulfuric acid, when polarized anodically at electrode potential about +1.5 V at room temperature. This procedure is used for large-scale industrial production of PbO
2
anodes. Lead and copper electrodes are immersed in sulfuric acid flowing at a rate of 5–10 L/min. The electrodeposition is carried out galvanostatically, by applying a current of about 100 A/m2 for about 30 minutes.

The drawback of this method for the production of lead dioxide anodes is its softness, especially compared to the hard and brittle PbO
2
which has a Mohs hardness of 5.5.[12] This mismatch in mechanical properties results in peeling of the coating which is preferred for bulk PbO
2
production. Therefore, an alternative method is to use harder substrates, such as titanium, niobium, tantalum or graphite and deposit PbO
2
onto them from lead(II) nitrate in static or flowing nitric acid. The substrate is usually sand-blasted before the deposition to remove surface oxide and contamination and to increase the surface roughness and adhesion of the coating.[13]

Applications

Lead dioxide is used in the production of matches, pyrotechnics, dyes and the curing of sulfide polymers. It is also used in the construction of high-voltage lightning arresters.[6]

Lead dioxide is used as an anode material in electrochemistry. β-PbO
2
is more attractive for this purpose than the α form because it has relatively low resistivity, good corrosion resistance even in low-pH medium, and a high overvoltage for the evolution of oxygen in sulfuric- and nitric-acid-based electrolytes. Lead dioxide can also withstand chlorine evolution in hydrochloric acid. Lead dioxide anodes are inexpensive and were once used instead of conventional platinum and graphite electrodes for regenerating potassium dichromate. They were also applied as oxygen anodes for electroplating copper and zinc in sulfate baths. In organic synthesis, lead dioxide anodes were applied for the production of glyoxylic acid from oxalic acid in a sulfuric acid electrolyte.[13]

Lead acid battery

The most important use of lead dioxide is as the cathode of lead acid batteries. Its utility arises from the anomalous metallic conductivity of PbO
2
. The lead acid battery stores and releases energy by shifting the equilibrium (a comproportionation) between metallic lead, lead dioxide, and lead(II) salts in sulfuric acid.

Pb + PbO
2
+ 2 HSO
4
+ 2 H+
→ 2 PbSO
4
+ 2 H
2
O
  E° = +2.05 V

Safety

Lead compounds are poisons.[14] Lead dioxide is a strong oxidizer, so any contact of skin, eyes with either lead dioxide or its vapours may cause severe injury in the form of burns which can even lead to death.

PbO
2
is not combustible, but it enhances flammability of other substances and the intensity of the fire. In case of a fire it gives off irritating and toxic fumes.[15]

Lead dioxide and other lead compound pose a huge environmental hazard when they are not disposed of properly. it is especially poisonous to aquatic life.[16]

References

  1. Meek, Terry L.; Garner, Leah D. (2005-02-01). "Electronegativity and the Bond Triangle". Journal of Chemical Education 82 (2): 325. doi:10.1021/ed082p325. ISSN 0021-9584. Bibcode2005JChEd..82..325M. 
  2. 2.0 2.1 2.2 Eagleson, Mary (1994). Concise Encyclopedia of Chemistry. Walter de Gruyter. p. 590. ISBN 978-3-11-011451-5. https://books.google.com/books?id=Owuv-c9L_IMC&pg=PA590. 
  3. Haidinger, W. (1845). "Zweite Klasse: Geogenide. II. Ordnung. Baryte VII. Bleibaryt. Plattnerit." (in de). Handbuch der Bestimmenden Mineralogie. Vienna: Braumüller & Seidel. p. 500. http://rruff.info/uploads/HBM1845_500.pdf. 
  4. 4.0 4.1 4.2 Taggard, J. E. Jr. (1988). "Scrutinyite, natural occurrence of α-PbO2 from Bingham, New Mexico, U.S.A., and Mapimi, Mexico". Canadian Mineralogist 26: 905. http://rruff.info/uploads/CM26_905.pdf. 
  5. Harada, H.; Sasa, Y.; Uda, M. (1981). "Crystal data for β-PbO2". Journal of Applied Crystallography 14 (2): 141. doi:10.1107/S0021889881008959. http://journals.iucr.org/j/issues/1981/02/00/a20480/a20480.pdf. 
  6. 6.0 6.1 6.2 6.3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 386. ISBN 978-0-08-037941-8. 
  7. Kumar De, Anil (2007). A Textbook of Inorganic Chemistry. New Age International. p. 387. ISBN 978-81-224-1384-7. https://books.google.com/books?id=PpTi_JAx7PgC&pg=PA387. 
  8. Barak, M. (1980). Electrochemical power sources: primary and secondary batteries. IET. pp. 184 ff. ISBN 978-0-906048-26-9. https://books.google.com/books?id=_PGzaO48Rz0C&pg=PA184. 
  9. M. Baulder (1963). "Lead(IV) Oxide". in G. Brauer. Handbook of Preparative Inorganic Chemistry, 2nd Ed.. 1. NY, NY: Academic Press. pp. 758. 
  10. Wiberg, Nils (2007) (in de). Lehrbuch der Anorganischen Chemie. Berlin: de Gruyter. p. 919. ISBN 978-3-11-017770-1. 
  11. Sutcliffe, Arthur (1930). Practical Chemistry for Advanced Students (1949 ed.). London: John Murray. 
  12. "Plattnerite: Plattnerite mineral information and data.". http://www.mindat.org/min-3237.html. 
  13. 13.0 13.1 François Cardarelli (2008). Materials Handbook: A Concise Desktop Reference. Springer. p. 574. ISBN 978-1-84628-668-1. https://books.google.com/books?id=ArsfQZig_9AC&pg=PA573. 
  14. "LEAD DIOXIDE". http://hazard.com/msds/mf/baker/baker/files/l2956.htm. 
  15. PubChem. "Lead dioxide" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/14793. 
  16. https://www.ltschem.com/msds/PbO2.pdf [bare URL PDF]

External links