Tetraapeirogonal tiling

From HandWiki
Revision as of 18:15, 6 February 2024 by MainAI5 (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.

Uniform constructions

There are 3 lower symmetry uniform construction, one with two colors of apeirogons, one with two colors of squares, and one with two colors of each:

Symmetry (*∞42)
[∞,4]
(*∞33)
[1+,∞,4] = [(∞,4,4)]
(*∞∞2)
[∞,4,1+] = [∞,∞]
(*∞2∞2)
[1+,∞,4,1+]
Coxeter CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel labelinfin.pngCDel branch 11.pngCDel split2-44.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel node.pngCDel split1-ii.pngCDel nodes 11.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.pngCDel labelinfin.png
Schläfli r{∞,4} r{4,∞}​12 r{∞,4}​12=rr{∞,∞} r{∞,4}​14
Coloring H2 tiling 24i-2.png H2 tiling 2ii-5.png H2 tiling 44i-3.png Uniform tiling verf-i4i4.png
Dual H2chess 24ia.png H2chess 2iid.png H2chess 44if.png H2chess 2iid.png

Symmetry

The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *∞∞2 and *∞44 symmetry.

Related polyhedra and tiling

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, "The Hyperbolic Archimedean Tessellations")
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links