Tetrahexagonal tiling

From HandWiki
Revision as of 22:34, 6 February 2024 by Dennis Ross (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.

Constructions

There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [6,4] kaleidoscope. Removing the last mirror, [6,4,1+], gives [6,6], (*662). Removing the first mirror [1+,6,4], gives [(4,4,3)], (*443). Removing both mirror as [1+,6,4,1+], leaving [(3,∞,3,∞)] (*3232).

Four uniform constructions of 4.6.4.6
Uniform
Coloring
H2 tiling 246-2.png H2 tiling 266-5.png H2 tiling 344-5.png 3222-uniform tiling-verf4646.png
Fundamental
Domains
642 symmetry 000.png 642 symmetry 00a.png 642 symmetry a00.png 642 symmetry a0b.png
Schläfli r{6,4} r{4,6}​12 r{6,4}​12 r{6,4}​14
Symmetry [6,4]
(*642)
CDel node c3.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node c2.png
[6,6] = [6,4,1+]
(*662)
CDel node c3.pngCDel split1-66.pngCDel nodeab c1.png
[(4,4,3)] = [1+,6,4]
(*443)
CDel branch c1.pngCDel split2-44.pngCDel node c2.png
[(∞,3,∞,3)] = [1+,6,4,1+]
(*3232)
CDel labelinfin.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel labelinfin.png or CDel nodeab c1.pngCDel 3a3b-cross.pngCDel nodeab c1.png
Symbol r{6,4} rr{6,6} r(4,3,4) t0,1,2,3(∞,3,∞,3)
Coxeter
diagram
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel node.pngCDel split1-66.pngCDel nodes 11.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel branch 11.pngCDel split2-44.pngCDel node.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png =
CDel labelinfin.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel labelinfin.png or CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes 11.png

Symmetry

The dual tiling, called a rhombic tetrahexagonal tiling, with face configuration V4.6.4.6, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*3232), shown here in two different centered views. Adding a 2-fold rotation point in the center of each rhombi represents a (2*32) orbifold.

Hyperbolic domains 3232.png120px120pxOrder-6 hexagonal tiling and dual.png

Related polyhedra and tiling

See also

  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

External links