Order-6 apeirogonal tiling
From HandWiki
In geometry, the order-6 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,6}.
Symmetry
The dual to this tiling represents the fundamental domains of [∞,6*] symmetry, orbifold notation *∞∞∞∞∞∞ symmetry, a hexagonal domain with five ideal vertices.
The order-6 apeirogonal tiling can be uniformly colored with 6 colored apeirogons around each vertex, and coxeter diagram: , except ultraparallel branches on the diagonals.
Related polyhedra and tiling
This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with six faces per vertex, starting with the triangular tiling, with Schläfli symbol {n,6}, and Coxeter diagram , with n progressing to infinity.
See also
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.
External links
- Weisstein, Eric W.. "Hyperbolic tiling". http://mathworld.wolfram.com/HyperbolicTiling.html.
- Weisstein, Eric W.. "Poincaré hyperbolic disk". http://mathworld.wolfram.com/PoincareHyperbolicDisk.html.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Original source: https://en.wikipedia.org/wiki/Order-6 apeirogonal tiling.
Read more |