List of mathematical uses of Latin letters

From HandWiki
Short description: None

Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.

Below is an alphabetical list of the letters of the alphabet with some of their uses. The field in which the convention applies is mathematics unless otherwise noted.

Aa

Bb

  • B represents:
    • the digit "11" in hexadecimal[2] and other positional numeral systems with a radix of 12 or greater[3]
    • the second point of a triangle[1]
    • a ball (also denoted by ℬ ([math]\displaystyle{ \mathcal{B} }[/math]) or [math]\displaystyle{ \mathbb{B} }[/math])[18]
    • a basis of a vector space or of a filter (both also denoted by ℬ ([math]\displaystyle{ \mathcal{B} }[/math]))
    • in econometrics and time-series statistics it is often used for the backshift or lag operator, the formal parameter of the lag polynomial
    • the magnetic field, denoted [math]\displaystyle{ \textbf{B} }[/math] or [math]\displaystyle{ \vec{B} }[/math]
  • B with various subscripts represents several variations of Brun's constant and Betti numbers; it can also be used to mean the Bernoulli numbers.
  • b represents:

Cc

  • C represents:
    • the third point of a triangle
    • the digit "12" in hexadecimal and other positional numeral systems with a radix of 13 or greater
    • the unit coulomb of electrical charge[10]
    • capacitance in electrical theory
    • with indices denoting the number of combinations, a binomial coefficient
    • together with a degree symbol (°), the Celsius measurement of temperature = °C[10]
    • the circumference of a circle or other closed curve
    • the complement of a set (lowercase c and the symbol ∁ are also used)
    • an arbitrary category
    • the number concentration[10]
  • [math]\displaystyle{ \mathbb{C} }[/math] represents the set of complex numbers.
  • A vertically elongated C with an integer subscript n sometimes denotes the n-th coefficient of a formal power series.
  • c represents:
  • Lowercase Fraktur [math]\displaystyle{ \mathfrak{c} }[/math] denotes the cardinality of the set of real numbers (the "continuum"), or, equivalently, of the power set of natural numbers.

Dd

Ee

Ff

  • F represents
    • the digit "15" in hexadecimal and other positional numeral systems with a radix of 16 or greater
    • the unit farad of electrical capacity[10]
    • the Helmholtz free energy of a closed thermodynamic system of constant pressure and temperature
    • together with a degree symbol (°) represents the Fahrenheit measurement of temperature = °F
  • F represents
  • f represents:
    • the unit prefix femto (10−15)[10]
  • f represents:

Gg

Hh

Ii

  • I represents:
  • I represents:
  • i represents:
    • the imaginary unit, a complex number that is the square root of −1
    • a subscript to denote the ith term (that is, a general term or index) in a sequence or list
    • the index to the elements of a vector, written as a subscript after the vector name
    • the index to the rows of a matrix, written as the first subscript after the matrix name
    • an index of summation using the sigma notation
    • the unit vector in Cartesian coordinates going in the X-direction, usual bold i

Jj

Kk

Ll

Mm

Nn

Oo

  • O represents
    • the order of asymptotic behavior of a function (upper bound); see Big O notation
    • [math]\displaystyle{ (0,0,\ldots,0) }[/math] — the origin of the coordinate system in Cartesian coordinates
    • the circumcenter of a triangle or other cyclic polygon, or more generally the center of a circle
  • o represents
    • the order of asymptotic behavior of a function (strict upper bound); see Little o notation
    • the order of an element in a group

Pp

Qq

Rr

  • R represents:
    • the Ricci tensor
    • the circumradius of a cyclic polygon such as a triangle
    • an arbitrary relation
  • [math]\displaystyle{ \mathbb{R} }[/math] represents the set of real numbers and various algebraic structures built upon the set of real numbers, such as [math]\displaystyle{ \mathbb{R}^n }[/math].
  • r represents:
    • the radius of a circle or sphere[10]
    • the inradius of a triangle or other tangential polygon
    • the ratio of a geometric series (e.g. arn−1)
    • the separation of two objects, for example in Coulomb's law
    • a position vector[10]
    • the rate of concentration change of B (due to chemical reaction) denoted rB [24]

Ss

Tt

Uu

Vv

Ww

Xx

Yy

Zz

See also

References

  1. 1.0 1.1 1.2 Weisstein, Eric W.. "Triangle" (in en). https://mathworld.wolfram.com/Triangle.html. 
  2. 2.0 2.1 "Hexadecimal - Hexadecimal and character sets - GCSE Computer Science Revision" (in en-GB). https://www.bbc.co.uk/bitesize/guides/zp73wmn/revision/1. 
  3. 3.0 3.1 "DECIMAL function". https://support.microsoft.com/en-us/office/decimal-function-ee554665-6176-46ef-82de-0a283658da2e#:~:text=A%20radix%20greater%20than%2010,#NUM!%20or%20#VALUE!. 
  4. "BIPM - SI base units". 2014-10-07. http://www.bipm.org/en/publications/si-brochure/section2-1.html. 
  5. 5.0 5.1 "BIPM - SI derived units". 2014-10-07. http://www.bipm.org/en/publications/si-brochure/section2-2.html. 
  6. Jensen, William B. (December 2005). "The Origins of the Symbols A and Z for Atomic Weight and Number" (in en). Journal of Chemical Education 82 (12): 1764. doi:10.1021/ed082p1764. ISSN 0021-9584. Bibcode2005JChEd..82.1764J. https://pubs.acs.org/doi/abs/10.1021/ed082p1764. 
  7. "22.1: Helmholtz Energy" (in en). 2014-06-21. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/22%3A_Helmholtz_and_Gibbs_Energies/22.01%3A_Helmholtz_Energy. 
  8. "The magnetic vector potential". https://farside.ph.utexas.edu/teaching/em/lectures/node38.html. 
  9. Weisstein, Eric W.. "Glaisher-Kinkelin Constant" (in en). https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html. 
  10. 10.000 10.001 10.002 10.003 10.004 10.005 10.006 10.007 10.008 10.009 10.010 10.011 10.012 10.013 10.014 10.015 10.016 10.017 10.018 10.019 10.020 10.021 10.022 10.023 10.024 10.025 10.026 10.027 10.028 10.029 10.030 10.031 10.032 10.033 10.034 10.035 10.036 10.037 10.038 10.039 10.040 10.041 10.042 10.043 10.044 10.045 10.046 10.047 10.048 10.049 10.050 10.051 10.052 10.053 10.054 10.055 10.056 10.057 10.058 10.059 10.060 10.061 10.062 10.063 10.064 10.065 10.066 10.067 10.068 10.069 10.070 10.071 10.072 10.073 10.074 10.075 10.076 10.077 10.078 10.079 10.080 10.081 10.082 10.083 10.084 10.085 10.086 10.087 10.088 10.089 10.090 10.091 10.092 10.093 10.094 10.095 10.096 10.097 10.098 10.099 10.100 10.101 10.102 10.103 10.104 10.105 10.106 10.107 Stohner, Jürgen; Quack, Martin (2011). "A Concise Summary of Quantities, Units, and Symbols in Physical Chemistry". Chemistry International (De Gruyter) 33 (4): Centerfold. http://publications.iupac.org/ci/2011/3304/July11_green-sup-4p.pdf. 
  11. "6.2.3.1: Arrhenius Equation" (in en). 2013-10-02. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/06%3A_Modeling_Reaction_Kinetics/6.02%3A_Temperature_Dependence_of_Reaction_Rates/6.2.03%3A_The_Arrhenius_Law/6.2.3.01%3A_Arrhenius_Equation. 
  12. Weisstein, Eric W.. "Algebraic Number" (in en). https://mathworld.wolfram.com/AlgebraicNumber.html. 
  13. Liebscher, Dierck-Ekkehard (2005). Cosmology. Berlin: Springer. pp. 53–77. ISBN 9783540232612. https://books.google.com/books?id=VK_rbBR61eUC&pg=PA53. 
  14. "Earliest Uses of Symbols from Geometry" (in en). https://mathshistory.st-andrews.ac.uk/Miller/mathsym/geometry/. 
  15. Conversion factors and tables. Part 1. Basis of tables. Conversion factors.. British Standards Institution (3rd revision ed.). London: BSI. 1974. pp. 7. ISBN 0-580-08471-X. OCLC 32212391. https://www.worldcat.org/oclc/32212391. 
  16. Conversion factors and tables. Part 1. Basis of tables. Conversion factors.. British Standards Institution (3rd revision ed.). London: BSI. 1974. pp. 4. ISBN 0-580-08471-X. OCLC 32212391. https://www.worldcat.org/oclc/32212391. 
  17. "Arithmetic Progression - Formula, Examples | AP Formula" (in en). https://www.cuemath.com/algebra/arithmetic-progressions/. 
  18. Weisstein, Eric W.. "Ball" (in en). https://mathworld.wolfram.com/Ball.html. 
  19. Prasad, Paras N. (16 January 2004) (in en). Introduction to Biophotonics. John Wiley & Sons. p. 12. ISBN 978-0-471-46539-3. https://books.google.com/books?id=zF1GYVamV34C&pg=PA12. 
  20. (in En) Quantities, Units and Symbols in Physical Chemistry. International Union of Pure and Applied Chemistry. 1993. pp. 20. ISBN 0-632-03583-8. 
  21. "6.4.1: Eyring equation" (in en). 2013-10-02. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/06%3A_Modeling_Reaction_Kinetics/6.04%3A_Transition_State_Theory/6.4.01%3A_Eyring_equation. 
  22. "Quantum Numbers for Atoms" (in en). 2013-10-02. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Quantum_Mechanics/10%3A_Multi-electron_Atoms/Quantum_Numbers_for_Atoms. 
  23. 23.0 23.1 23.2 23.3 23.4 23.5 23.6 Kardar, Mehran (2007). Statistical Physics of Particles. Cambridge University Press. ISBN 978-0-521-87342-0. OCLC 860391091. 
  24. 24.0 24.1 https://media.iupac.org/publications/analytical_compendium/Cha01sec39.pdf[bare URL PDF]
  25. 25.0 25.1 "Velocity, acceleration and distance - Motion - Edexcel - GCSE Physics (Single Science) Revision - Edexcel" (in en-GB). https://www.bbc.co.uk/bitesize/guides/z3whb82/revision/5. 
  26. "frequency | Definition, Symbols, & Formulas | Britannica" (in en). https://www.britannica.com/science/frequency-physics. 
  27. Durrer, Ruth (2021). The cosmic microwave background (2nd ed.). Cambridge, United Kingdom: Cambridge University Press. ISBN 978-1-316-47152-4. OCLC 1182021387. https://www.worldcat.org/oclc/1182021387. 
  28. Quantities, Units and Symbols in Physical Chemistry. International Union of Pure and Applied Chemistry. 1993. pp. 56. ISBN 0-632-03583-8.